Skip to main content
Log in

The Log-Exponential Smoothing Technique and Nesterov’s Accelerated Gradient Method for Generalized Sylvester Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The Sylvester or smallest enclosing circle problem involves finding the smallest circle enclosing a finite number of points in the plane. We consider generalized versions of the Sylvester problem in which the points are replaced by sets. Based on the log-exponential smoothing technique and Nesterov’s accelerated gradient method, we present an effective numerical algorithm for solving these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sylvester, J.J.: A question in the geometry of situation. Q. J. Pure Appl. Math. 1, 79 (1857)

    Google Scholar 

  2. Alonso, J., Martini, H., Spirova, M.: Minimal enclosing discs, circumcircles, and circumcenters in normed planes. Comput. Geom. 45, 258–274 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, C., Hu, X., Martin, C.: On the smallest enclosing balls. Commun. Inf. Syst. 6, 137–160 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Fischer, K., Gartner, B.: The smallest enclosing ball of balls: combinatorial structure and algorithms. Comput. Geom. 14, 341–378 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Hearn, D.W., Vijay, J.: Efficient algorithms for the (weighted) minimum circle problem. Oper. Res. 30, 777–795 (1981)

    Article  MathSciNet  Google Scholar 

  6. Nielsen, F., Nock, R.: Approximating smallest enclosing balls with applications to machine learning. Int. J. Comput. Geom. Appl. 19, 389–414 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Saha, A., Vishwanathan, S., Zhang, X.: Efficient approximation algorithms for minimum enclosing convex shapes. In: Proceedings of SODA (2011)

  8. Welzl, E.: Smallest enclosing disks (balls ellipsoids). In: Maurer, H. (eds.) Lecture Notes in Computer Science 555, 359–370 (1991)

  9. Yildirim, E.A.: On the minimum volume covering ellipsoid of ellipsoids. SIAM J. Optim. 17, 621–641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yildirim, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM J. Optim. 19, 1368–1391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou, G., Toh, K.C., Sun, J.: Efficient algorithms for the smallest enclosing ball problem. Comput. Optim. Appl. 30, 147–160 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nam, N.M., An, N.T., Salinas, J.: Applications of convex analysis to the smallest intersecting ball problem. J. Convex Anal. 19, 497–518 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Mordukhovich, B.S., Nam, N.M., Villalobos, C.: The smallest enclosing ball problem and the smallest intersecting ball problem: existence and uniqueness of optimal solutions. Optim. Lett. 7, 839–853 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mordukhovich, B.S., Nam, N.M.: Applications of variational analysis to a generalized Fermat–Torricelli problem. J. Optim. Theory Appl. 148, 431–454 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chi, E., Zhou, H., Lange, K.: Distance majorization and its applications. Math. Program. Ser. A 146, 409–436 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jahn, T., Kupitz, Y.S., Martini, H., Richter, C.: Minsum location extended to gauges and to convex sets. J. Optim. Theory Appl. 166, 711–746 (2015)

    Article  MathSciNet  Google Scholar 

  17. Bertsekas, D., Nedic, A., Ozdaglar, A.: Convex Analysis and Optimization. Athena Scientific, Boston (2003)

    MATH  Google Scholar 

  18. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  19. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Fundamentals. Springer, Berlin (1993)

    Google Scholar 

  20. Mordukhovich, B.S., Nam, N.M.: An Easy Path to Convex Analysis and Applications. Morgan & Claypool Publishers, California (2014)

    MATH  Google Scholar 

  21. Nam, N.M., An, N.T., Rector, R.B., Sun, J.: Nonsmooth algorithms and Nesterov’s smoothing technique for generalized Fermat–Torricelli problems. SIAM J. Optim. 24(4), 1815–1839 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. He, Y., Ng, K.F.: Subdifferentials of a minimum time function in Banach spaces. J. Math. Anal. Appl. 321, 896–910 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhai, X.: Two Problems in Convex Conic Optimization. Master’s thesis, National University of Singapore (2007)

  24. Mairal, J.: Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning. arXiv preprint arXiv:1402.4419 (2014)

  25. Hunter, D.R., Lange, K.: Tutorial on MM algorithms. Am. Stat. 58, 30–37 (2004)

    Article  MathSciNet  Google Scholar 

  26. Lange, K., Hunter, D.R., Yang, I.: Optimization transfer using surrogate objective functions (with discussion). J Comput Graph. Stat. 9, 1–59 (2000)

    MathSciNet  Google Scholar 

  27. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence O(\(\frac{1}{k^2}\)). Doklady AN SSSR (translated as Soviet Math. Docl.) 269, 543–547 (1983)

  29. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees and Prof. Jie Sun for reading the paper carefully and giving valuable comments to improve the content and the presentation of the paper. The research of the first author was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant #101.01-2014.37. The research of Daniel Giles was partially supported by the USA National Science Foundation under grant DMS-1411817. The research of Nguyen Mau Nam was partially supported by the USA National Science Foundation under grant DMS-1411817 and the Simons Foundation under Grant #208785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Mau Nam.

Additional information

Communicated by Horst Martini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, N.T., Giles, D., Nam, N.M. et al. The Log-Exponential Smoothing Technique and Nesterov’s Accelerated Gradient Method for Generalized Sylvester Problems. J Optim Theory Appl 168, 559–583 (2016). https://doi.org/10.1007/s10957-015-0811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0811-z

Keywords

Mathematics Subject Classification

Navigation