Skip to main content
Log in

Robust Optimal Control Design Using a Differential Game Approach for Open-Loop Linear Quadratic Descriptor Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies the robust optimal control problem for descriptor systems. We applied differential game theory to solve the disturbance attenuation problem. The robust control problem was converted into a reduced ordinary zero-sum game. Within a linear quadratic setting, we solved the problem for finite and infinite planning horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We would like to thank the referee pointing this out to us.

  2. The system (1) has at most index one, if and only if \(rank\left( {\left[ {\begin{array}{*{20}c} E &{} {A_EW} \\ \end{array}} \right] } \right) = n + r\) (see [11]).

  3. We write \(X>0 (X\ge 0)\) if \(X\) is positive (semi) definite.

  4. \({\mathbb {C}}^ - = \left\{ {\lambda \in {\mathbb {C}} \left| {{\mathop {\mathrm{Re}}\nolimits } \left( \lambda \right) < 0} \right. } \right\} {\mathbb {C}}_0^ + = \left\{ {\lambda \in {\mathbb {C}}\left| {{\mathop {\mathrm{Re}}\nolimits } \left( \lambda \right) \ge 0} \right. } \right\} .\)

  5. \(\lim _{t_f \rightarrow \infty } J_i \left( {t_f ,x_{1_0 } ,u} \right) = - \infty \left( \infty \right) \) if \(\forall r \in {\mathbb {R}},\exists T_f \in {\mathbb {R}} \text {, such that } t_f \ge T_f\) implies \(J_i \left( {t_f ,x_{1_0 } ,u} \right) \le r\left( { \ge r} \right) \).

  6. Matrix \(A\) is called stable if the real parts of all its eigenvalues are negative.

  7. Such a solution is called an LRS solution.

  8. Note from (2) that the assumption that \(A\) is stable is equivalent to the assumption that all finite eigenvalues of \(A_E\) are stable.

References

  1. Başar, T., Bernhard, P.: \({\cal H}_\infty \) Optimal Control and Related Minimax Design Problem. Modern Birkhäuser Classics, Boston (1995)

    Google Scholar 

  2. van den Broek, W.A., Engwerda, J.C., Schumacher, J.M.: Robust equilibria in indefinite linear-quadratic differential games. JOTA 51, 565–595 (2003)

    Article  Google Scholar 

  3. Kun, G.: Stabilizability, controllability, and optimal strategies of linear and nonlinear dynamical games. Ph.D. Thesis, RWTH-Aachen, Dept. of Mathematics (2001)

  4. Haurie, A., Krawczyk, J., Zaccour, G.: Games and Dynamic Games. World Scientific Publishing Company, Singapore (1993)

    Google Scholar 

  5. Musthofa, M.W., Salmah, Engwerda, J.C., Suparwanto, A.: The open-loop zero-sum linear quadratic impulse free descriptor differential game. Int. J. Appl. Math. Stat. 35(5), 29–44 (2013)

    MathSciNet  Google Scholar 

  6. Engwerda, J.C., Salmah, Wijayanti, I.E.: The open-loop discounted linear quadratic differential game for regular higher order index descriptor systems. Int. J. Control 82(12), 2365–2374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pan, Z., Başar, T.: \(H^{-infty}\)-optimal control for singularly perturbed systems. Part I: perfect state measurements. Automatica 29(2), 401–423 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pan, Z., Başar, T.: \(H^{-infty}\)-optimal control for singularly perturbed systems. Part II: imperfect measurements. In: Proceedings of 31th IEEE Conference on Decision and Control, Tucson, Arizona (2009)

  9. Houska, B.: Robustness and stability optimization of open-loop controlled power generating kites. Ph.D. Thesis, Ruprecht-Karls-Universität Heidelberg, Fakultät für Mathematik und Informatik (2007)

  10. Gantmacher, F.: Theory of Matrices. Chelsea Publishing Company, New York (1959)

    MATH  Google Scholar 

  11. Kautsky, J., Nicholas, N.K., Chu, E.K.-W.: Robust pole assignment in singular control systems. Linear Algebra Appl. 147, 9–37 (1989)

    Article  Google Scholar 

  12. Musthofa, M.W., Salmah, Engwerda, J.C., Suparwanto, A.: The open-loop zero-sum linear quadratic differential game for index one descriptor systems. In: Proceedings of 2nd International Conference on Instrumentation Control and Automation, pp. 350–355 (2011)

  13. Musthofa, M.W.: Robust optimal control design with differential game approach for linear quadratic descriptor systems. Ph.D. thesis, Universitas Gadjah Mada, Dept. of Mathematics (2015)

  14. Engwerda, J.C., Salmah, : The open loop linear quadratic differential game for index one descriptor systems. Automatica 45, 585–592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Salmah: Optimal control of regulator descriptor systems for dynamic games. Ph.D. Thesis, Universitas Gadjah Mada, Dept. of Mathematics (2006)

  16. Salmah: Open-loop zero-sum linear quadratic dynamic game for descriptor systems. In: Proceedings of the 1st International Conference on Instrumentation Control and Automation, pp. 179–183 (2009)

  17. Xu, H., Mizukami, K.: Linear-quadratic zero-sum differential games for generalized state space systems. IEEE Trans. Autom. Control 39, 143–147 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Engwerda, J.C.: Linear Quadratic Dynamic Optimization and Differential Games. Wiley, West Sussex (2005)

    Google Scholar 

  19. Xu, S., Lam, J.: Robust Control and Filtering of Singular Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Wang, H.S., Yung, C.F., Chang, F.R.: \({\cal H}_\infty \) Control for Nonlinear Descriptor System. Springer, London (2006)

    Google Scholar 

  21. Huang, J.C., Wang, H.S., Chang, F.R.: Robust \(H_\infty \) control for uncertain linear time-invariant descriptor systems. Proc. IEE Control Theory Appl. 147, 648–654 (2000)

    Article  Google Scholar 

  22. Lee, H.J., Kau, S.W., Liu, Y.S.: An improvement on robust \({\cal H}_\infty \) control for uncertain continuous-time descriptor systems. Int. J. Control Autom. Syst. 41, 271–280 (2006)

    Google Scholar 

  23. Mattsson, S.E., Söderlind, G.: Index reduction in differential-algebraic equations using dummy derivatives. SIAM J. Sci. Comput. 14, 677–692 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kunkel, P., Mehrmann, V.: Index reduction for differential–algebraic equations by minimal extension. Zeitschrift für Angewandte Mathematik and Mechanik 84, 579–597 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author is grateful for the support of the Directorate General High Education of Ministry of Education and Culture of Indonesia through a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Wakhid Musthofa.

Additional information

Communicated by Dean A. Carlson.

Appendix: State Transformation and Shorthand Notation (7, 8)

Appendix: State Transformation and Shorthand Notation (7, 8)

With \(X\) and \(Y\) defined as in (2), \(X =: \left[ {\begin{array}{*{20}c} {X_1 } &{} {X_2 } \\ \end{array}} \right] \) and \(Y^T =: \left[ {\begin{array}{*{20}c} {Y_1^T }&{Y_2^T } \end{array}} \right] \) are nonsingular matrices. With the state transformation \(\left[ {\begin{array}{*{20}c} {x_1 \left( t \right) } \\ {x_2 \left( t \right) } \\ \end{array}} \right] : = X^{ - 1} x\left( t \right) \), the corresponding state and control matrices for the reduced dynamical system are \(A:=J;\ B_1:=Y_1B_u\) and \(B_2:=Y_1B_w\).

The matrices used in Eqs. (7) and (8) are

\(C_1 X =: \bar{C}_1 =: \left[ {\begin{array}{*{20}c} {\bar{C}_{11} }&{\bar{C}_{12} } \end{array}} \right] , C_2 X =: \bar{C}_2 =: \left[ {\begin{array}{*{20}c} {\bar{C}_{21} }&{\bar{C}_{22} } \end{array}} \right] , Q: = X_1^T \bar{Q}X_1 ,\ V: = - X_1^T \bar{Q}X_2 Y_2 B_u ,\ N: = B_u^T Y_2^T X_2^T \bar{Q}X_2 Y_2 B_w ,\ W: = - X_1^T \bar{Q}X_2 Y_2 B_w ,\ R_{\bar{1} \bar{1}} : = B_u^T Y_2^T X_2^T \bar{Q} X_2 Y_2 B_u + \bar{R}_1\), and \(R_{\overline{22}\gamma } : = B_w^T Y_2^T X_2^T \bar{Q}X_2 Y_2 B_w - \gamma \bar{R}_2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musthofa, M.W., Salmah, Engwerda, J. et al. Robust Optimal Control Design Using a Differential Game Approach for Open-Loop Linear Quadratic Descriptor Systems. J Optim Theory Appl 168, 1046–1064 (2016). https://doi.org/10.1007/s10957-015-0750-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0750-8

Keywords

Mathematics Subject Classification

Navigation