Skip to main content
Log in

Optimal Solutions to Relaxation in Multiple Control Problems of Sobolev Type with Nonlocal Nonlinear Fractional Differential Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We introduce the optimality question to the relaxation in multiple control problems described by Sobolev-type nonlinear fractional differential equations with nonlocal control conditions in Banach spaces. Moreover, we consider the minimization problem of multi-integral functionals, with integrands that are not convex in the controls, of control systems with mixed nonconvex constraints on the controls. We prove, under appropriate conditions, that the relaxation problem admits optimal solutions. Furthermore, we show that those optimal solutions are in fact limits of minimizing sequences of systems with respect to the trajectory, multicontrols, and the functional in suitable topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baleanu, D., Tenreiro Machado, J.A., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  3. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication. Wiley, New York (1993)

    Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA (1999)

    MATH  Google Scholar 

  5. Tarasov, V.E.: Fractional Dynamics. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  6. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  7. Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 72, 2859–2862 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. El-Sayed, A.M.A.: Fractional-order diffusion-wave equation. Int. J. Theor. Phys. 35, 311–322 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nieto, J.J.: Maximum principles for fractional differential equations derived from Mittag–Leffler functions. Appl. Math. Lett. 23, 1248–1251 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shen, Y., Yang, S., Sui, C.: Analysis on limit cycle of fractional-order van der Pol oscillator. Chaos Solitons Fractals 67, 94–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benchohra, M., Gatsori, E.P., Ntouyas, S.K.: Controllability results for semilinear evolution inclusions with nonlocal conditions. J. Optim. Theory Appl. 118, 493–513 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Debbouche, A., Baleanu, D.: Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 62, 1442–1450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Debbouche, A., Baleanu, D., Agarwal, R.P.: Nonlocal nonlinear integrodifferential equations of fractional orders. Bound. Value Probl. 2012, 78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Debbouche, A., Torres, D.F.M.: Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces. Int. J. Control 86, 1577–1585 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. N’Guérékata, G.M.: A Cauchy problem for some fractional abstract differential equation with non local conditions. Nonlinear Anal. 70, 1873–1876 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, J., Zhou, Y., Wei, W., Xu, H.: Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls. Comput. Math. Appl. 62, 1427–1441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real World Appl. 11, 4465–4475 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  19. Lakshmikantham, V.: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Anal. 69, 2677–2682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Franklin, G.F., Da Powell, J., Emami-Naeini, A.: Feedback Control of Dynamic Systems. Prentice Hall, Reading, MA (2014)

    MATH  Google Scholar 

  22. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imp. Coll. Press, London (2012)

    Book  MATH  Google Scholar 

  23. Almeida, R., Pooseh, S., Torres, D.F.M.: Computational Methods in the Fractional Calculus of Variations. Imp. Coll. Press, London (2015)

    Book  MATH  Google Scholar 

  24. Malinowska, A.B., Odzijewicz, T., Torres, D.F.M.: Advanced Methods in the Fractional Calculus of Variations. Springer Briefs in Applied Sciences and Technology. Springer, Cham (2015)

    Google Scholar 

  25. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53, 215–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Özdemir, N., Karadeniz, D., İskender, B.B.: Fractional optimal control problem of a distributed system in cylindrical coordinates. Phys. Lett. A 373, 221–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fec̆kan, M., Wang, J., Zhou, Y.: Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators. J. Optim. Theory Appl. 156, 79–95 (2013)

    Article  MathSciNet  Google Scholar 

  29. Li, F., Liang, J., Xu, H.-K.: Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510–525 (2012)

    Article  MATH  Google Scholar 

  30. Debbouche, A., Nieto, J.J.: Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls. Appl. Math. Comput. 245, 74–85 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Debbouche, A., Torres, D.F.M.: Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions. Appl. Math. Comput. 243, 161–175 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Kamocki, R.: On the existence of optimal solutions to fractional optimal control problems. Appl. Math. Comput. 235, 94–104 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Liu, X., Liu, Z., Fu, X.: Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 409, 446–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  35. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  37. Zaidman, S.D.: Abstract Differential Equations. Pitman, Boston, MA (1979)

    MATH  Google Scholar 

  38. Aubin, J.-P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  39. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. 1. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  40. Tolstonogov, A.A.: Relaxation in nonconvex optimal control problems described by first-order evolution equations. Sb. Math. 190, 1689–1714 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dixon, J., McKee, S.: Weakly singular discrete Gronwall inequalities. Z. Angew. Math. Mech. 66, 535–544 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Himmelberg, C.J.: Measurable relations. Fund. Math. 87, 53–72 (1975)

    MathSciNet  MATH  Google Scholar 

  44. Tolstonogov, A.A.: On the Scorza–Dragoni theorem for multivalued mappings with a variable domain. Math. Notes 48, 1151–1158 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. De Blasi, F.S., Pianigiani, G., Tolstonogov, A.A.: A Bogolyubov-type theorem with a nonconvex constraint in Banach spaces. SIAM J. Control Optim. 43, 466–476 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhu, Q.J.: On the solution set of differential inclusions in Banach space. J. Differ. Equ. 93, 213–237 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tolstonogov, A.A., Tolstonogov, D.A.: \(L_p\)-continuous extreme selectors of multifunctions with decomposable values: relaxation theorems. Set-Valued Anal. 4, 237–269 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Balder, E.J.: Necessary and sufficient conditions for \(L_1\)-strong-weak lower semicontinuity of integral functionals. Nonlinear Anal. 11, 1399–1404 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was initiated during a visit of Debbouche and Torres to the Department of Mathematical Analysis of the University of Santiago of Compostela, Spain, followed by a visit of Debbouche to the Department of Mathematics of University of Aveiro, Portugal. The hospitality and the financial support provided by the host institutions in Spain and Portugal are here gratefully acknowledged. Nieto has been partially supported by the Ministerio de Economía y Competitividad of Spain under Grants MTM2010–15314 and MTM2013–43014–P, Xunta de Galicia under Grant R2014/002, and co-financed by the European Community fund FEDER. Torres was supported by funds through The Portuguese Foundation for Science and Technology (FCT), within CIDMA Project UID/MAT/04106/2013 and OCHERA Project PTDC/EEI-AUT/1450/2012, co-financed by FEDER under POFC-QREN with COMPETE reference FCOMP-01-0124-FEDER-028894.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delfim F. M. Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debbouche, A., Nieto, J.J. & Torres, D.F.M. Optimal Solutions to Relaxation in Multiple Control Problems of Sobolev Type with Nonlocal Nonlinear Fractional Differential Equations. J Optim Theory Appl 174, 7–31 (2017). https://doi.org/10.1007/s10957-015-0743-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0743-7

Keywords

Mathematics Subject Classification

Navigation