Skip to main content
Log in

Minsum Location Extended to Gauges and to Convex Sets

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

One of the oldest and richest problems from continuous location science is the famous Fermat–Torricelli problem, asking for the unique point in Euclidean space that has minimal distance sum to \(n\) given (non-collinear) points. Many natural and interesting generalizations of this problem were investigated, e.g., by extending it to non-Euclidean spaces and modifying the used distance functions, or by generalizing the configuration of participating geometric objects. In the present paper, we extend the Fermat–Torricelli problem in a twofold way: more general than for normed spaces, the unit balls of our spaces are compact convex sets having the origin as an interior point (but without symmetry condition), and the \(n\) given objects can be general convex sets (instead of points). We combine these two viewpoints, and the presented sequence of new theorems follows in a comparing sense that of corresponding theorems known for normed spaces. It turns out that some of these results holding for normed spaces carry over to our more general setting, and others do not. In addition, we present analogous results for related questions, like, e.g., for Heron’s problem. And finally, we derive a collection of additional results holding particularly for the Euclidean norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boltyanski, V., Martini, H., Soltan, V.: Geometric Methods and Optimization Problems. Kluwer Academic, Dordrecht (1999)

    Book  MATH  Google Scholar 

  2. Durier, R., Michelot, C.: Geometrical properties of the Fermat–Weber problem. Eur. J. Oper. Res. 20, 332–343 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Martini, H., Swanepoel, K., Weiß, G.: The Fermat–Torricelli problem in normed planes and spaces. J. Optim. Theory Appl. 115, 283–314 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Martini, H., Schöbel, A.: Median and center hyperplanes in Minkowski spaces—a unified approach. Discret. Math. 241, 407–426 (2001)

    Article  MATH  Google Scholar 

  5. Körner, M.-C., Martini, H., Schöbel, A.: Minsum hyperspheres in normed spaces. Discret. Appl. Math. 15, 2221–2233 (2012)

    Article  Google Scholar 

  6. Mordukhovich, B.S., Nam, N.M.: An Easy Path to Convex Analysis and Applications. Morgan & Claypool, Williston, VT (2013)

    Google Scholar 

  7. Menger, K.: Untersuchungen über allgemeine Metrik. Math. Ann. 100, 75–163 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boltyanski, V., Martini, H., Soltan, P.S.: Excursions into Combinatorial Geometry. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  9. Plastria, F.: On destination optimality in asymmetric distance Fermat–Weber problems. Ann. Oper. Res. 40, 355–369 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rockafellar, R.T.: Convex Analysis, 2nd edn. Princeton University Press, Princeton, NJ (1972)

    Google Scholar 

  11. Cobzaş, Ş.: Functional Analysis in Asymmetric Normed Spaces. Birkhäuser/Springer Basel AG, Basel (2013)

    Book  MATH  Google Scholar 

  12. García-Raffi, L.M.: Compactness and finite dimension in asymmetric normed linear spaces. Topology Appl. 153, 844–853 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Werner, D.: Funktionalanalysis, 7th edn. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  14. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  15. Kupitz, Y.S., Martini, H., Spirova, M.: The Fermat–Torricelli problem, part I: a discrete gradient-method approach. J. Optim. Theory Appl. 158, 305–327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martini, H., Swanepoel, K., Weiß, G.: The geometry of Minkowski spaces—a survey, Part I. Expo. Math. 19, 97–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  18. Mordukhovich, B.S., Nam, N.M.: Applications of variational analysis to a generalized Fermat–Torricelli problem. J. Optim. Theory Appl. 148, 431–454 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Alegre, C., Ferrando, I.: Quotient subspaces of asymmetric normed linear spaces. Bol. Soc. Mat. Mexicana 3(13), 357–365 (2007)

    MathSciNet  Google Scholar 

  20. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge, NJ (2002)

    Book  MATH  Google Scholar 

  21. Ghandehari, M.: Heron’s problem in the Minkowski plane, Tech. Report 306, Math. Dept., Univ. of Texas at Arlington (1997).

  22. Mordukhovich, B.S., Nam, N.M., Salinas, J.: Applications of variational analysis to a generalized Heron problem. Appl. Anal. 91, 1915–1942 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mordukhovich, B.S., Nam, N.M., Salinas, J.: Solving a generalized Heron problem by means of convex analysis. Am. Math. Monthly 119, 87–99 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nam, N.M., Hoang, N., An, N.T.: Constructions of solutions to generalized Sylvester and Fermat–Torricelli problems for Euclidean balls. J. Optim. Theory Appl. 160, 483–509 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nam, N.M., Hoang, N.: A generalized Sylvester problem and a generalized Fermat–Torricelli problem. J. Convex Anal. 20, 669–687 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Mordukhovich, B.S., Nam, N.M.: Subgradients of minimal time functions under minimal requirements. J. Convex Anal. 18, 915–947 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Chen, P.-C., Hansen, P., Jaumard, B., Tuy, H.: Solution of the multisource Weber and conditional Weber problems by D.-C. programming. Oper. Res. 46, 548–562 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. An, N.T., Nam, N.M., Yen, N.D.: A D.C. algorithm via convex analysis approach for solving a location problem involving sets. arXiv:1404.5113v2 (2014).

  29. Nickel, S., Dudenhöffer, E.-M.: Weber’s problem with attraction and repulsion under polyhedral gauges. J. Global Optim. 11, 409–432 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter, Berlin (2014)

    MATH  Google Scholar 

  31. Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic, Dordrecht (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research was partially worked out when the fourth-named author held a visiting professorship at the Faculty of Mathematics of the Otto von Guericke University of Magdeburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jahn.

Additional information

Communicated by Amir Beck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahn, T., Kupitz, Y.S., Martini, H. et al. Minsum Location Extended to Gauges and to Convex Sets. J Optim Theory Appl 166, 711–746 (2015). https://doi.org/10.1007/s10957-014-0692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0692-6

Keywords

Mathematics Subject Classification

Navigation