Quantitative Characterizations of Regularity Properties of Collections of Sets

Abstract

Several primal and dual quantitative characterizations of regularity properties of collections of sets in normed linear spaces are discussed. Relationships between regularity properties of collections of sets and those of set-valued mappings are provided.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    Observed by a reviewer.

References

  1. 1.

    Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Bakan, A., Deutsch, F., Li, W.: Strong CHIP, normality, and linear regularity of convex sets. Trans. Am. Math. Soc. 357, 3831–3863 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Math. Program. Ser. A 86, 135–160 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    Bauschke, H.H., Borwein, J.M., Tseng, P.: Bounded linear regularity, strong CHIP, and CHIP are distinct properties. J. Convex Anal. 7, 395–412 (2000)

    MATH  MathSciNet  Google Scholar 

  6. 6.

    Burke, J.V., Deng, S.: Weak sharp minima revisited. II. Application to linear regularity and error bounds. Math. Program. Ser. B 104, 235–261 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Ioffe, A.D.: Approximate subdifferentials and applications. III. The metric theory. Mathematika 36, 1–38 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. 8.

    Li, C., Ng, K.F., Pong, T.K.: The SECQ, linear regularity, and the strong CHIP for an infinite system of closed convex sets in normed linear spaces. SIAM J. Optim. 18, 643–665 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    Ngai, H.V., Théra, M.: Metric inequality, subdifferential calculus and applications. Set-Valued Anal. 9, 187–216 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    Zheng, X.Y., Ng, K.F.: Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM J. Optim. 19, 62–76 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Zheng, X.Y., Wei, Z., Yao, J.-C.: Uniform subsmoothness and linear regularity for a collection of infinitely many closed sets. Nonlinear Anal. 73, 413–430 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Kruger, A.Y.: Stationarity and regularity of set systems. Pac. J. Optim. 1, 101–126 (2005)

    MATH  MathSciNet  Google Scholar 

  13. 13.

    Kruger, A.Y.: About regularity of collections of sets. Set-Valued Anal. 14, 187–206 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Kruger, A.Y.: About stationarity and regularity in variational analysis. Taiwanese J. Math. 13, 1737–1785 (2009)

    MATH  MathSciNet  Google Scholar 

  15. 15.

    Kruger, A.Y., López, M.A.: Stationarity and regularity of infinite collections of sets. J. Optim. Theory Appl. 154, 339–369 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Kruger, A.Y., López, M.A.: Stationarity and regularity of infinite collections of sets. Applications to infinitely constrained optimization. J. Optim. Theory Appl. 155, 390–416 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Kruger, A.Y., Thao, N.H.: About uniform regularity of collections of sets. Serdica Math. J. 39, 287–312 (2013)

    MathSciNet  Google Scholar 

  18. 18.

    Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. 19.

    Hesse R., Luke D. R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. Preprint, http://arXiv.org/abs/:1212.3349v1. Accessed 17 Dec 2013

  20. 20.

    Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23, 2397–2419 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9, 485–513 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. 22.

    Luke, D.R.: Local linear convergence of approximate projections onto regularized sets. Nonlinear Anal. 75, 1531–1546 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Luke, D.R.: Prox-regularity of rank constraint sets and implications for algorithms. J. Math. Imaging Vis. 47, 231–238 (2013)

    Google Scholar 

  24. 24.

    Kruger, A.Y.: On Fréchet subdifferentials. J. Math. Sci. 116, 3325–3358 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    Kruger, A.Y.: Weak stationarity: eliminating the gap between necessary and sufficient conditions. Optimization 53, 147–164 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. 26.

    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  27. 27.

    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Google Scholar 

  28. 28.

    Kruger, A.Y.: Strict \(\varepsilon \)-semidifferentials and differentiation of multivalued mappings. Dokl. Akad. Nauk Belarusi 40, 38–43 (1996). (in Russian)

    MATH  MathSciNet  Google Scholar 

  29. 29.

    Kruger, A.Y.: On the extremality of set systems. Dokl. Nats. Akad. Nauk Belarusi 42, 24–28 (1998). (in Russian)

    Google Scholar 

  30. 30.

    Kruger, A.Y.: Strict \((\varepsilon,\delta )\)-semidifferentials and the extremality of sets and functions. Dokl. Nats. Akad. Nauk Belarusi 44, 19–22 (2000). (in Russian)

    MATH  MathSciNet  Google Scholar 

  31. 31.

    Kruger, A.Y.: Strict \((\varepsilon,\delta )\)-subdifferentials and extremality conditions. Optimization 51, 539–554 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. 32.

    Aussel, D., Daniilidis, A., Thibault, L.: Subsmooth sets: functional characterizations and related concepts. Trans. Am. Math. Soc. 357, 1275–1301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. 33.

    Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55, 501–558 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. 34.

    Klatte, D., Li, W.: Asymptotic constraint qualifications and global error bounds for convex inequalities. Math. Program. Ser. A 84, 137–160 (1999)

    MATH  MathSciNet  Google Scholar 

  35. 35.

    Lewis A.S., Pang J.-S.: Error bounds for convex inequality systems. In: Generalized Convexity, Generalized Monotonicity: Recent Results (Luminy, 1996), pp. 75–110. Kluwer Acad. Publ. Dordrecht (1998)

  36. 36.

    Li, W., Nahak, C., Singer, I.: Constraint qualifications for semi-infinite systems of convex inequalities. SIAM J. Optim. 11, 31–52 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. 37.

    Penot, J.-P.: Calculus Without Derivatives. Springer, New York (2013)

    Google Scholar 

  38. 38.

    Lucchetti, R.: Convexity and Well-Posed Problems. CMS Books in Mathematics/ Ouvrages de Mathématiques de la SMC. Springer, New York (2006)

    Google Scholar 

  39. 39.

    Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge, NJ (2002)

    Google Scholar 

  40. 40.

    Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  41. 41.

    Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss. Acta Univ. Carolinae 30, 51–56 (1989)

    MATH  MathSciNet  Google Scholar 

  42. 42.

    Dontchev, A.L., Lewis, A.S., Rockafellar, R.T.: The radius of metric regularity. Trans. Am. Math. Soc. 355, 493–517 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. 43.

    Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal. 12, 79–109 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. 44.

    Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis. Springer, Dordrecht (2009)

    Google Scholar 

  45. 45.

    Penot, J.-P.: Metric regularity, openness and Lipschitz behavior of multifunctions. Nonlinear Anal. 13, 629–643 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  46. 46.

    Zheng, X.Y., Ng, K.F.: Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces. SIAM J. Optim. 18, 437–460 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  47. 47.

    Zheng, X.Y., Ng, K.F.: Metric subregularity and calmness for nonconvex generalized equations in Banach spaces. SIAM J. Optim. 20, 2119–2136 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. 48.

    Zheng, X.Y., Ng, K.F.: Metric subregularity for proximal generalized equations in Hilbert spaces. Nonlinear Anal. 75, 1686–1699 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  49. 49.

    Apetrii, M., Durea, M., Strugariu, R.: On subregularity properties of set-valued mappings. Set-Valued Var. Anal. 21, 93–126 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  50. 50.

    Aragón Artacho, F.J., Mordukhovich, B.S.: Enhanced metric regularity and Lipschitzian properties of variational systems. J. Global Optim. 50, 145–167 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  51. 51.

    Kruger, A.Y., Thao, N.H.: About \([q]\)-regularity properties of collections of sets. J. Math. Anal. Appl. (2014). doi: 10.1016/j.jmaa.2014.02.028

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the referees for their very careful reading of the paper and many valuable comments and suggestions, which helped us improve the presentation. The authors also thank Editor-in-Chief Professor Franco Giannessi for his time and patience when scrutinizing this paper. The research was supported by the Australian Research Council, project DP110102011.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Kruger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kruger, A.Y., Thao, N.H. Quantitative Characterizations of Regularity Properties of Collections of Sets. J Optim Theory Appl 164, 41–67 (2015). https://doi.org/10.1007/s10957-014-0556-0

Download citation

Keywords

  • Collections of sets
  • Metric regularity
  • Normal cone
  • Subdifferential

Mathematics Subject Classification (2000)

  • 49J53
  • 49K27
  • 58E30