Abstract
This paper is concerned with the problem of strong duality between an infinite dimensional convex optimization problem with cone and equality constraints and its Lagrange dual.
A necessary and sufficient condition and sufficient conditions, really new, in order that the strong duality holds true are given. As an application, the existence of the Lagrange multiplier associated with the obstacle problem and to an elastic–plastic torsion problem, more general than the ones previously considered, is stated together with a characterization of the elastic–plastic torsion problem. This application is the main result of the paper.
It is worth remarking that the usual conditions based on the interior, on the core, on the intrinsic core or on the strong quasi-relative interior cannot be used because they require the nonemptiness of the interior (and of the above mentioned generalized interior concepts) of the ordering cone, which is usually empty.
This is a preview of subscription content, access via your institution.
References
Rockafellar, R.T.: Conjugate Duality and Optimization. Conference board of the Mathematical Science regional Conference Series in Applied Mathematics, vol. 16. Society for Industrial and Applied Mathematics, Philadelphia (1974)
Holmes, R.B.: Geometric Functional Analysis. Springer, Berlin (1975)
Borwein, J.M., Jeyakumar, V., Lewis, A.S., Wolkowicz, M.: Constrained approximation via convex programming. Preprint, University of Waterloo (1988)
Jeyakumar, V., Wolkowicz, H.: Generalizations of slater constraint qualification for infinite convex programs. Math. Program. 57, 85–101 (1992)
Barbagallo, A., Maugeri, A.: Duality theory for a dynamic oligopolistic market equilibrium problem. Optimization 60, 29–52 (2011)
Cojocaru, M.G., Daniele, P., Nagurney, A.: Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces and applications. J. Optim. Theory Appl. 127, 549–563 (2005)
Daniele, P.: Dynamic Networks and Evolutionary Variational Inequalities. Edward Elgar, Cheltenham (2006)
Daniele, P.: Evolutionary variational inequalities and applications to complex dynamic multi-level models. Transportation Research Part E 46, 855–880 (2010)
Daniele, P., Giuffré, S.: General infinite dimensional duality and applications to evolutionary network equilibrium problems. Optim. Lett. 1, 227–243 (2007)
Daniele, P., Giuffré, S., Idone, G., Maugeri, A.: Infinite dimensional duality and applications. Math. Ann. 339, 221–239 (2007)
Donato, M.B., Maugeri, A., Milasi, M., Vitanza, C.: Duality theory for a dynamic Walrasian pure exchange economy. Pac. J. Optim. 4, 537–547 (2008)
Gwinner, J., Raciti, F.: Random equilibrium problems on networks. Math. Comput. Model. 43, 880–891 (2006)
Gwinner, J., Raciti, F.: On a class of random variational inequalities on random sets. Numer. Funct. Anal. Optim. 27, 619–636 (2006)
Idone, G., Maugeri, A.: Generalized constraints qualification and infinite dimensional duality. Taiwan. J. Math. 13, 1711–1722 (2009)
Scrimali, L.: Infinite dimensional duality theory applied to investment strategies in environmental policy. J. Optim. Theory Appl. 154, 258–277 (2012)
Brezis, H.: Moltiplicateur de Lagrange en torsion elasto-plastique. Arch. Ration. Mech. Anal. 49, 32–40 (1972)
Bot, R.I., Csetnek, E.R., Moldovan, A.: Revisiting some dual theorems via the quasirelative interior in convex optimization. J. Optim. Theory Appl. 139, 67–84 (2008)
Daniele, P., Giuffré, S., Maugeri, A.: Remarks on general infinite dimensional duality with cone and equality constraints. Commun. Appl. Anal. 13(4), 567–578 (2009)
Grad, A.: Quasi-relative interior-type constraints qualifications ensuring strong Lagrange duality for optimization problems with cone and affine constraints. J. Math. Anal. Appl. 364, 86–95 (2010)
Maugeri, A., Raciti, F.: Remarks on infinite dimensional duality. J. Glob. Optim. 46, 581–588 (2010)
Zalinescu, C.: Private communications: September 4th, 5th, 7th, October 10th (2007)
Brezis, H., Sibony, M.: Equivalence de Deux Inéquation Variationnelles et Application. Arch. Ration. Mech. Anal. 41, 254–265 (1971)
Lanchon, H., Duvaut, G.: Sur la Solution du probleme de torsion élastoplastic d’une bare cylindrique de section quelconque. C. R. Acad. Sci. Paris, Ser. A 264, 520–523 (1967)
Lanchon, H.: Solution du probleme de torsion élastoplastic d’une bare cylindrique de section quelconque. C. R. Acad. Sci. Paris, Ser. A 269, 791–794 (1969)
Rodriguez, J.F.: Obstacle Problems in Mathematical Physics. North-Holland, Amsterdam (1987)
Bot, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19(1), 217–233 (2008)
Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: quasi relative interiors and duality theory. Math. Program. 57, 15–48 (1992)
Daniele, P., Maugeri, A.: Variational inequalities and discrete continuum models of network equilibrium. Probl. Math. Comput. Model. 35, 689–708 (2002)
Daniele, P., Giuffré, S., Pia, S.: Competitive financial equilibrium problems with policy interventions. J. Ind. Manag. Optim. 1(1), 39–52 (2005)
Donato, M.B., Milasi, M., Vitanza, C.: Quasi-variational approach of a competitive economic equilibrium problem with utility function: existence of equilibrium. Math. Models Methods Appl. Sci. 18(3), 351–367 (2008)
Giannessi, F., Maugeri, A.: Preface of the special issue on the proceedings of the first AMS-UMI joint meeting. J. Glob. Optim. 28 (2004)
Idone, G., Maugeri, A.: Variational inequalities and transport planning for an elastic and continuous model. J. Ind. Manag. Optim. 1, 81–86 (2005)
Maugeri, A., Murthy, M.K.V., Trudinger, N.: Preface of the variational analysis and partial differential equations. In memory of Sergio Campanato and Guido Stampacchia. J. Glob. Optim. 40, 1–5 (2008)
Maugeri, A., Raciti, F.: On general infinite dimensional complementarity problems. Optim. Lett. 2, 71–90 (2008)
Prager, W., Hodge, P.G.: Theory of Perfectly Plastic Solids. Wiley, New York (1951)
Ting, T.W.: Elastic-plastic torsion of a square bar. Trans. Am. Math. Soc. 113, 369–401 (1966)
Schultze, R.S.R.: Von Mises (1883–1953): a pioneer of applied mathematics in four countries. Newsl.—Eur. Math. Soc. 73, 31–34 (2009)
Von Mises, R.: Mechanik der festen Körper im plastish deformablem Zustand. Nachr. Ges. Wiss. Goett., Math.-Phys. Kl. 582–592, (1913)
Von Mises, R.: Three Remarks on the Theory of the Ideal Plastic Body. Reissner Anniversary Volume. Edwards, Ann Arbor (1949)
Ting, T.W.: Elastic-plastic torsion problem II. Arch. Ration. Mech. Anal. 25, 342–366 (1967)
Ting, T.W.: Elastic-plastic torsion problem III. Arch. Ration. Mech. Anal. 34, 228–244 (1969)
Friedman, A.: Variational Principles and Free Boundary Problems. Wiley, New York (1982)
Brezis, H.: Problémes Unilatéraux. J. Math. Pures Appl. 51, 1–168 (1972)
Stampacchia, G.: On a problem of numerical analysis connected with the theory of variational inequalities. In: Symposia Mathematica, vol. X, pp. 281–293. Academic Press, San Diego (1972)
Chiadó-Piat, V., Percivale, D.: Generalized Lagrange multipliers in elastoplastic torsion. J. Differ. Equ. 114, 570–579 (1994)
Donato, M.B.: The infinite dimensional Lagrange multiplier rule for convex optimization problems. J. Funct. Anal. 261(8), 2083–2093 (2011)
Giuffrè, S., Maugeri, A.: New results on infinite dimensional duality in elastic–plastic torsion. Filomat 26, 1029–1036 (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Daniele, P., Giuffrè, S., Maugeri, A. et al. Duality Theory and Applications to Unilateral Problems. J Optim Theory Appl 162, 718–734 (2014). https://doi.org/10.1007/s10957-013-0512-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-013-0512-4
Keywords
- Strong duality
- Variational inequalities
- Quasi-relative interior
- Elastic–plastic torsion