Advertisement

A Direct Splitting Method for Nonsmooth Variational Inequalities

  • J. Y. Bello Cruz
  • R. Díaz Millán
Article

Abstract

We propose a direct splitting method for solving a nonsmooth variational inequality in Hilbert spaces. The weak convergence is established when the operator is the sum of two point-to-set and monotone operators. The proposed method is a natural extension of the incremental subgradient method for nondifferentiable optimization, which strongly explores the structure of the operator using projected subgradient-like techniques. The advantage of our method is that any nontrivial subproblem must be solved, like the evaluation of the resolvent operator. The necessity to compute proximal iterations is the main difficulty of other schemes for solving this kind of problem.

Keywords

Maximal monotone operators Monotone variational inequalities Projection methods Splitting methods 

Notes

Acknowledgements

The authors would like to thank CNPq. Research for this paper was partially supported by PRONEX, PROCAD-nf—UFG/UnB/IMPA and by project CAPES-MES-CUBA 226/2012 “Modelos de Otimização e Aplicações”. The second author was supported by a scholarship for his doctoral studies, granted by CAPES. The authors would like to extend gratitude toward the anonymous referees whose suggestions helped us to improve the presentation of this paper.

References

  1. 1.
    Aubin, J.E.: L’Analyse non linéaire et ses motivations économiques. Masson, Paris (1984) Google Scholar
  2. 2.
    Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. Wiley, New York (1988) zbMATHGoogle Scholar
  3. 3.
    Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Fang, S.C., Petersen, E.L.: Generalized variational inequalities. J. Optim. Theory Appl. 38, 363–383 (1982) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Todd, M.J.: The Computations of Fixed Points and Applications. Springer, Berlin (1976) Google Scholar
  6. 6.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980) zbMATHGoogle Scholar
  7. 7.
    Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. Springer, New York (2012) zbMATHGoogle Scholar
  8. 8.
    Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003) Google Scholar
  9. 9.
    Iusem, A.N.: On some properties of paramonotone operators. J. Convex Anal. 5, 269–278 (1998) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Add. Optim. 43, 85 (1998) Google Scholar
  12. 12.
    Khobotov, E.N.: Modifications of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1987) zbMATHMathSciNetGoogle Scholar
  13. 13.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Èkon. Mat. Metody 12, 747–756 (1976) zbMATHGoogle Scholar
  14. 14.
    Solodov, M.V., Svaiter, B.F.: A new projection method for monotone variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Solodov, M.V., Tseng, P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Control Optim. 34, 1814–1830 (1996) zbMATHMathSciNetGoogle Scholar
  16. 16.
    Bao, T.Q., Khanh, P.Q.: A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities. Nonconv. Optim. Appl. 77, 113–129 (2005) MathSciNetGoogle Scholar
  17. 17.
    Iusem, A.N., Lucambio Pérez, L.R.: An extragradient-type method for non-smooth variational inequalities. Optimization 48, 309–332 (2000) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001) zbMATHGoogle Scholar
  19. 19.
    Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979) zbMATHMathSciNetGoogle Scholar
  20. 20.
    Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000) zbMATHMathSciNetGoogle Scholar
  21. 21.
    Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7, 323–345 (1999) zbMATHMathSciNetGoogle Scholar
  22. 22.
    Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Konnov, I.V.: Splitting-type method for systems of variational inequalities. Comput. Oper. Res. 33, 520–534 (2006) zbMATHMathSciNetGoogle Scholar
  24. 24.
    Moudafi, A.: On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 359, 508–513 (2009) zbMATHMathSciNetGoogle Scholar
  25. 25.
    Lassonde, M., Nagesseur, L.: Extended forward-backward algorithm. J. Math. Anal. Appl. 403, 167–172 (2013) zbMATHMathSciNetGoogle Scholar
  26. 26.
    Zhang, H., Cheng, L.: Projective splitting methods for sums of maximal monotone operators with applications. J. Math. Anal. Appl. 406, 323–334 (2013) MathSciNetGoogle Scholar
  27. 27.
    Nedic, A., Bertsekas, D.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 12, 109–138 (2001) zbMATHMathSciNetGoogle Scholar
  28. 28.
    Bello Cruz, J.Y., Iusem, A.N.: An explicit algorithm for monotone variational inequalities. Optimization 61, 855–871 (2012) zbMATHMathSciNetGoogle Scholar
  29. 29.
    Bello Cruz, J.Y., Iusem, A.N.: Convergence of direct methods for paramonotone variational inequalities. Comput. Optim. Appl. 46, 247–263 (2010) zbMATHMathSciNetGoogle Scholar
  30. 30.
    Bello Cruz, J.Y., Iusem, A.N.: Full convergence of an approximate projection method for nonsmooth variational inequalities. Math. Comput. Simul. (2010). doi: 10.1016/j.matcom.2010.05.026 Google Scholar
  31. 31.
    Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis, pp. 237–424. Academic Press, New York (1971) Google Scholar
  32. 32.
    Ermoliev, Yu.M.: On the method of generalized stochastic gradients and quasi-Fejér sequences. Cybern. Syst. Anal. 5, 208–220 (1969) Google Scholar
  33. 33.
    Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math. Oper. Res. 19, 790–814 (1994) zbMATHMathSciNetGoogle Scholar
  34. 34.
    Alber, Ya.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81, 23–37 (1998) zbMATHMathSciNetGoogle Scholar
  35. 35.
    Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent direct method for monotone variational inequalities in Hilbert spaces. Numer. Funct. Anal. Optim. 30, 23–36 (2009) zbMATHMathSciNetGoogle Scholar
  36. 36.
    Shih, M.H., Tan, K.K.: Browder–Hartmann–Stampacchia variational inequalities for multi-valued monotone operators. J. Math. Anal. Appl. 134, 431–440 (1988) zbMATHMathSciNetGoogle Scholar
  37. 37.
    Alber, Ya.I.: Recurrence relations and variational inequalities. Sov. Math. Dokl. 27, 511–517 (1983) Google Scholar
  38. 38.
    Fukushima, M.: A relaxed projection for variational inequalities. Math. Program. 35, 58–70 (1986) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.IME, Federal University of Goiás, Campus Samambaia, CEP 74001-970GoiâniaBrazil
  2. 2.Federal Institute of Education, Science and TechnologyGoiâniaBrazil

Personalised recommendations