Journal of Optimization Theory and Applications

, Volume 162, Issue 2, pp 463–488 | Cite as

On Higher-Order Sensitivity Analysis in Nonsmooth Vector Optimization

  • H. T. H. Diem
  • P. Q. Khanh
  • L. T. Tung


We propose the notion of higher-order radial-contingent derivative of a set-valued map, develop some calculus rules and use them directly to obtain optimality conditions for several particular optimization problems. Then we employ this derivative together with contingent-type derivatives to analyze sensitivity for nonsmooth vector optimization. Properties of higher-order contingent-type derivatives of the perturbation and weak perturbation maps of a parameterized optimization problem are obtained.


Sensitivity Higher-order radial-contingent derivative Higher-order contingent-type derivative Set-valued vector optimization Perturbation map Weak perturbation map 



This research was supported by the Vietnam National University Hochiminh City (VNU-HCM) under the grant number B2013-28-01. A part of the work of the second author was completed during his stay as a visiting professor at the Vietnam Institute for Advanced Study in Mathematics (VIASM), whose hospitality is gratefully acknowledged. The authors are indebted to the anonymous referees for many valuable detailed remarks, which have helped to improve significantly the paper.


  1. 1.
    Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York (1983) zbMATHGoogle Scholar
  2. 2.
    Tanino, T.: Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56, 479–499 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Tanino, T.: Stability and sensitivity analysis in convex vector optimization. SIAM J. Control Optim. 26, 521–536 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Shi, D.S.: Contingent derivative of the perturbation map in multiobjective optimization. J. Optim. Theory Appl. 70, 385–396 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Kuk, H., Tanino, T., Tanaka, M.: Sensitivity analysis in vector optimization. J. Optim. Theory Appl. 89, 713–730 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Shi, D.S.: Sensitivity analysis in convex vector optimization. J. Optim. Theory Appl. 77, 145–159 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Kuk, H., Tanino, T., Tanaka, M.: Sensitivity analysis in parameterized convex vector optimization. J. Math. Anal. Appl. 202, 511–522 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Levy, A.B., Rockafellar, R.T.: Sensitivity analysis of solutions to generalized equations. Trans. Am. Math. Soc. 345, 661–671 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Levy, A.B.: Lipschitzian multifunctions and a Lipschitzian inverse mapping theorem. Math. Oper. Res. 26, 105–118 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Rockafellar, R.T.: Proto-differentiability of set-valued mappings and its applications in optimization. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6, 449–482 (1989) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Huy, N.Q., Lee, G.M.: Sensitivity of solutions to a parametric generalized equation. Set-Valued Anal. 16, 805–820 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lee, G.M., Huy, N.Q.: On proto-differentiability of generalized perturbation maps. J. Math. Anal. Appl. 324, 1297–1309 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Mordukhovich, B.S.: Coderivetive analysis of variational systems. J. Glob. Optim. 28, 347–362 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Levy, A.B., Mordukhovich, B.S.: Coderivatives in parametric optimization. Math. Program., Ser. A 99, 311–327 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Chuong, T.D., Yao, J.C.: Generalized Clarke epiderivatives of Parametric vector optimization problems. J. Optim. Theory Appl. 146, 77–94 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Sun, X.K., Li, S.J.: Lower Studniarski derivative of the perturbation map in parameterized vector optimization. Optim. Lett. 5, 601–614 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Anh, L.N.H., Khanh, P.Q.: Variational sets of perturbation maps and applications to sensitivity analysis for constrained vector optimization. J. Optim. Theory Appl. 158, 363–384 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 25, 1044–1049 (1986) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Khanh, P.Q., Tuan, N.D.: Variational sets of multivalued mappings and a unified study of optimality conditions. J. Optim. Theory Appl. 139, 45–67 (2008) Google Scholar
  20. 20.
    Khanh, P.Q., Tuan, N.D.: Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization. J. Optim. Theory Appl. 139, 243–261 (2008) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Anh, N.L.H., Khanh, P.Q., Tung, L.T.: Variational sets: calculus and applications to nonsmooth vector optimization. Nonlinear Anal. TMA 74, 2358–2379 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Luc, D.T.: Contingent derivatives of set-valued maps and applications to vector optimization. Math. Program. 50, 99–111 (1991) CrossRefzbMATHGoogle Scholar
  23. 23.
    Anh, L.N.H., Khanh, P.Q.: Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives. J. Glob. Optim. 56, 519–536 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Ha, T.D.X.: Optimality conditions for several types of efficient solutions of set-valued optimization problems. In: Pardalos, P., Rassis, T.M., Khan, A.A. (eds.) Nonlinear Analysis and Variational Problems, pp. 305–324. Springer, Berlin (2009) Google Scholar
  25. 25.
    Anh, N.L.H., Khanh, P.Q., Tung, L.T.: Higher-order radial derivatives and optimality conditions in nonsmooth vector optimization. Nonlinear Anal. TMA 74, 7365–7379 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Khanh, P.Q.: Proper solutions of vector optimization problems. J. Optim. Theory Appl. 74, 105–130 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Guerraggio, A., Molho, E., Zaffaroni, A.: On the notion of proper efficiency in vector optimization. J. Optim. Theory Appl. 82, 1–21 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Makarov, E.K., Rachkovski, N.N.: Unified representation of proper efficiency by means of dilating cones. J. Optim. Theory Appl. 101, 141–165 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Berlin (1990) zbMATHGoogle Scholar
  30. 30.
    Penot, J.-P.: Differentiability of relations and differential stability of perturbed optimization problems. SIAM J. Control Optim. 22, 529–551 (1984) CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Taa, A.: Necessary and sufficient conditions for multiobjective optimization problems. Optimization 36, 97–104 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Jahn, J., Khan, A.A.: Some calculus rules for contingent epiderivatives. Optimization 52, 113–125 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, 3rd edn. Springer, Berlin (2009) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsCollege of CanthoCanthoVietnam
  2. 2.Department of MathematicsInternational University of Hochiminh CityHochiminh CityVietnam
  3. 3.Department of Mathematics, College of Natural SciencesCantho UniversityCanthoVietnam

Personalised recommendations