Abstract
The aim of this paper is to provide a survey of some recent results in the field of optimality conditions in vector optimization with geometric and inequality/equality constraints. Moreover, the discussion we initiate leads us to consider new situations which were not previously studied.
This is a preview of subscription content, access via your institution.
References
Dutta, J., Tammer, C.: Lagrangian conditions for vector optimization in Banach spaces. Math. Methods Oper. Res. 64, 521–541 (2006)
Durea, M., Tammer, C.: Fuzzy necessary optimality conditions for vector optimization problems. Optimization 58, 449–467 (2009)
Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42, 1071–1086 (2003)
Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, Berlin (2003)
Zheng, X.Y., Ng, K.F.: The Fermat rule for multifunctions on Banach spaces. Math. Program., Ser. A 104, 69–90 (2005)
Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. 122, 301–347 (2010)
Durea, M., Strugariu, R.: On some Fermat rules for set-valued optimization problems. Optimization 60, 575–591 (2011)
Durea, M., Dutta, J.: Lagrange multipliers for Pareto minima in general Banach spaces. Pac. J. Optim. 4, 447–463 (2008)
Bao, T.Q., Tammer, C.: Lagrange necessary conditions for Pareto minimizers in Asplund spaces and applications. Nonlinear Anal. 75, 1089–1103 (2012)
Durea, M., Dutta, J., Tammer, C.: Lagrange multipliers for ε-Pareto solutions in vector optimization with non solid cones in Banach spaces. J. Optim. Theory Appl. 145, 196–211 (2010)
Hiriart-Urruty, J.-B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)
Jules, F.: Sur la somme de sous-différentiels de fonctions semi-continues inférieurement. Dissert. Math. 423 (2003)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory, Vol. II: Applications. Springer, Berlin (2006)
Durea, M.: On the existence and stability of approximate solutions of perturbed vector equilibrium problems. J. Math. Anal. Appl. 333, 1165–1176 (2007)
Zălinescu, C.: Stability for a class of nonlinear optimization problems and applications. In: Nonsmooth Optimization and Related Topics, Erice, 1988, pp. 437–458. Plenum, New York (1989)
Maeda, T.: Constraint qualifications in multiobjeetive optimization problems: differentiable case. J. Optim. Theory Appl. 80, 483–500 (1994)
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
Jiménez, B., Novo, V.: Alternative theorems and necessary optimality conditions for directionally differentiable multiobjective programs. J. Convex Anal. 9, 97–116 (2002)
Bigi, G.: Optimality and Lagrangian regularity in vector optimization. PhD Thesis, Università di Pisa (2003)
Durea, M., Dutta, J., Tammer, C.: Bounded sets of Lagrange multipliers for vector optimization problems in infinite dimension. J. Math. Anal. Appl. 348, 589–606 (2008)
Huang, N.J., Li, J., Wu, S.Y.: Optimality conditions for vector optimization problems. J. Optim. Theory Appl. 142, 323–342 (2009)
Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969)
Ye, J.J.: Nondifferentiable multiplier rules for optimization and bilevel optimization problems. SIAM J. Optim. 15, 252–274 (2004)
Zheng, X.Y., Ng, K.F.: The Lagrange multiplier rule for multifunctions on Banach spaces. SIAM J. Optim. 17, 1154–1175 (2006)
Bellaassali, S., Jourani, A.: Lagrange multipliers for multiobjective programs with a general preference. Set-Valued Anal. 16, 229–243 (2008)
Michel, P., Penot, J.-P.: Calcul sous-différentiel pour des fonctions lipschitziennes et non lipschitziennes. C. R. Acad. Sci. Paris Sér. I Math. 12, 269–272 (1984)
Michel, P., Penot, J.-P.: A generalized derivative for calm and stable functions. Differ. Integral Equ. 5, 433–454 (1992)
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)
Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)
Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)
Fabian, M., Mordukhovich, B.S.: Sequential normal compactness versus topological normal compactness in variational analysis. Nonlinear Anal. 54, 1057–1067 (2003)
Acknowledgements
The work of M. Durea and R. Strugariu was supported by a grant of the Romanian National Authority for Scientific Research, CNCS–UEFISCDI, project number PN-II-ID-PCE-2011-3-0084.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Durea, M., Strugariu, R. & Tammer, C. Scalarization in Geometric and Functional Vector Optimization Revisited. J Optim Theory Appl 159, 635–655 (2013). https://doi.org/10.1007/s10957-013-0360-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-013-0360-2