Skip to main content

Advertisement

Log in

A Class of Differential Vector Variational Inequalities in Finite Dimensional Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce and study a class of differential vector variational inequalities in finite dimensional Euclidean spaces. We establish a relationship between differential vector variational inequalities and differential scalar variational inequalities. Under various conditions, we obtain the existence and linear growth of solutions to the scalar variational inequalities. In particular we prove existence theorems for Carathéodory weak solutions of the differential vector variational inequalities. Furthermore, we give a convergence result on Euler time-dependent procedure for solving the initial-value differential vector variational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pang, J.S., Stewart, D.E.: Differential variational inequalities. Math. Program., Ser. A 113, 345–424 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  3. Filippov, A.F.: Differential equations with discontinuous right-hand side. Am. Math. Soc. Transl. 42, 199–231 (1964). Original in Russian in: Math. Sb. 5, 99–127 (1960)

    MATH  Google Scholar 

  4. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Side. Kluwer Academic, Dordrecht (1988)

    Book  Google Scholar 

  5. Smirnov, G.V.: Introduction to the Theory of Differential Inclusions. Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  6. Han, L.S., Pang, J.S.: Non-zenoness of a class of differential quasi-variational inequalities. Math. Program., Ser. A 121, 171–199 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pang, J.S., Shen, J.: Strongly regular differential variational systems. IEEE Trans. Autom. Control 52, 242–255 (2007)

    Article  MathSciNet  Google Scholar 

  8. Li, X.S., Huang, N.J., O’Regan, D.: Differential mixed variational inequalities in finite dimensional spaces. Nonlinear Anal. 72, 3875–3886 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Stewart, D.E.: Uniqueness for index-one differential variational inequalities. Nonlinear Anal. Hybrid Syst. 2, 812–818 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mandelbaum, A.: The dynamic complementarity problem. Unpublished manuscript (1989)

  11. Çamlıbel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: On linear passive complementarity systems. Eur. J. Control 8, 220–237 (2002)

    Article  Google Scholar 

  12. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Linear complementarity systems. SIAM J. Appl. Math. 60, 1234–1269 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Anitescu, M., Hart, G.D.: A constraint-stabilized time-stepping for multi-body dynamics with contact and friction. Int. J. Numer. Methods Eng. 60, 2335–2371 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Anitescu, M., Potra, F.A., Stewart, D.E.: Time-stepping for three-dimensional rigid-body dynamics. Comput. Methods Appl. Mech. Eng. 177, 183–197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brogliato, B.: Nonsmooth Mechanics. Models, Dynamics and Control. Springer, London (1999)

    MATH  Google Scholar 

  16. Cojocaru, M.G., Daniele, P., Nagurney, A.: Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications. J. Optim. Theory Appl. 127, 549–563 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Projected dynamical systems in a complementarity formalism. Oper. Res. Lett. 27, 83–91 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Song, P., Krauss, P., Kumar, V., Dupont, P.: Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. J. Appl. Mech. 68, 118–128 (2001)

    Article  MATH  Google Scholar 

  19. Song, P., Pang, J.S., Kumar, V.: Semi-implicit time-stepping models for frictional compliant contact problems. Int. J. Numer. Methods Eng. 60, 2231–2261 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stewart, D.E.: Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painlevé’s problem. Arch. Ration. Mech. Anal. 145, 215–260 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Trinkle, J.C., Tzitzouris, J.A., Pang, J.S.: Dynamic multi-rigid systems with concurrent distributed contacts. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 359, 2575–2593 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tzitzouris, J., Pang, J.S.: A time-stepping complementarity approach for frictionless systems of rigid bodies. SIAM J. Optim. 12, 834–860 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Çamlıbel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: Consistency of a time-stepping method for a class of piecewise-linear networks. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49, 349–357 (2002)

    Article  Google Scholar 

  24. Giannessi, F.: Theorems of alterative, quadratic programs and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, New York (1980)

    Google Scholar 

  25. Anh, L.Q., Khanh, P.Q.: Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems. J. Math. Anal. Appl. 294, 699–711 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Chen, G.Y., Huang, X.X., Yang, X.Q.: In: Vector Optimization: Set-Valued and Variational Analysis. Lecture Notes in Economics and Mathematical System, vol. 541. Springer, Berlin (2005)

    Google Scholar 

  27. Chen, C.R., Li, S.J., Fang, Z.M.: On the solution semicontinuity to a parametric generalized vector quasivariational inequality. Comput. Math. Appl. 60, 2417–2425 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria. Mathematical Theories. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  29. Huang, N.J., Fang, Y.P.: On vector variational inequalities in reflexive Banach spaces. J. Optim. Theory Appl. 32, 495–505 (2005)

    MATH  MathSciNet  Google Scholar 

  30. Yang, X.Q., Yao, J.C.: Gap functions and existence of solutions to set-valued vector variational inequalities. J. Optim. Theory Appl. 115, 407–417 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hartman, P., Stampacchia, G.: On some nonlinear elliptic differential functional equations. Acta Math. 115, 273–310 (1966)

    Article  MathSciNet  Google Scholar 

  32. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  33. Rochafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

  34. Taubert, K.: Differenz Verfahren für gewöhnliche Anfangswertaufgaben mit unstetiger rechte Seite. In: Dold, A., Eckmann, B. (eds.) Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen. Lecture Notes Series, vol. 395, pp. 137–148 (1974)

    Chapter  Google Scholar 

  35. Taubert, K.: Differenzverfahren für schwingungen mit trockener und zäher reibung und für regelungssysteme. Numer. Math. 26, 379–395 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  36. Taubert, K.: Converging multistep methods for initial value problems involving multivalued maps. Computing 27, 123–136 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  37. Dontchev, A., Lempio, F.: Differential methods for differential inclusion: a survey. SIAM Rev. 34, 263–294 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the referees for their valuable comments and suggestions. This work was supported by the National Natural Science Foundation of China (11171237) and the Key Program of NSFC (Grant No. 70831005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-jing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Huang, Nj. A Class of Differential Vector Variational Inequalities in Finite Dimensional Spaces. J Optim Theory Appl 162, 633–648 (2014). https://doi.org/10.1007/s10957-013-0311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0311-y

Keywords

Navigation