Advertisement

Frozen Iterative Methods Using Divided Differences “à la Schmidt–Schwetlick”

  • Miquel Grau-Sánchez
  • Miquel Noguera
  • José M. GutiérrezEmail author
Article

Abstract

The main goal of this paper is to study the order of convergence and the efficiency of four families of iterative methods using frozen divided differences. The first two families correspond to a generalization of the secant method and the implementation made by Schmidt and Schwetlick. The other two frozen schemes consist of a generalization of Kurchatov method and an improvement of this method applying the technique used by Schmidt and Schwetlick previously. An approximation of the local convergence order is generated by the examples, and it numerically confirms that the order of the methods is well deduced. Moreover, the computational efficiency indexes of the four algorithms are presented and computed in order to compare their efficiency.

Keywords

Divided difference Order of convergence Nonlinear equations Iterative methods Efficiency 

Notes

Acknowledgements

The research of the three authors has been supported by a grant of the Spanish Ministry of Science and Innovation (Ref. MTM2011-28636-C02-01).

References

  1. 1.
    Potra, F.A., Pták, V.: Nondiscrete Induction and Iterative Processes. Pitman Publishing, Boston (1984), 250 pp. zbMATHGoogle Scholar
  2. 2.
    Kurchatov, V.A.: On a method of linear interpolation for the solution of functional equations. Dokl. Akad. Nauk SSSR 198(3), 524–526 (1971). Translation in Sov. Math. Dokl. 12, 835–838 (1971) MathSciNetGoogle Scholar
  3. 3.
    Grau-Sánchez, M., Grau, A., Noguera, M.: Frozen divided difference scheme for solving systems of nonlinear equations. J. Comput. Appl. Math. 235, 1739–1743 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Schmidt, J.W., Schwetlick, H.: Ableitungsfreie Verfahren mit Höherer Konvergenzgeschwindigkeit. Computing 3, 215–226 (1968) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Hernández, M.A., Rubio, M.J.: Semilocal convergence of the secant method under mild convergence conditions of differentiability. Comput. Math. Appl. 44, 277–285 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Potra, F.A., Pták, V.: A generalization of Regula Falsi. Numer. Math. 36, 333–346 (1981) CrossRefzbMATHGoogle Scholar
  7. 7.
    Shakno, S.M.: On an iterative algorithm with superquadratic convergence for solving nonlinear operator equations. J. Comput. Appl. Math. 231, 222–335 (2009) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ezquerro, J.A., Grau-Sánchez, M., Grau, A., Hernández, M.A.: Construction of derivative-free iterative methods from Chebyshev’s method. Anal. Appl. (2012, to appear) Google Scholar
  9. 9.
    Argyros, I.K., Gutiérrez, J.M.: A unified approach for enlarging the radius of convergence for Newton’s method and applications. Nonlinear Funct. Anal. Appl. 10, 555–563 (2005) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Argyros, I.K., Gutiérrez, J.M.: A unifying local and semilocal convergence analysis of Newton-like methods. Adv. Nonlinear Var. Inequal. 10, 1–11 (2007) zbMATHGoogle Scholar
  11. 11.
    Argyros, I.K.: A Kantorovich-type analysis for a fast iterative method for solving nonlinear equations. J. Math. Anal. Appl. 332, 97–108 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Grau-Sánchez, M., Noguera, M.: A technique to choose the most efficient method between secant method and some variants. Appl. Math. Comput. 218, 6415–6426 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Grau-Sánchez, M., Grau, A., Noguera, M.: On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. 236, 1259–1266 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Fousse, L., Hanrot, G., Lefèvre, V., elissier P, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007), 15 pp. CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: On some computational orders of convergence. Appl. Math. Lett. 23, 472–478 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ezquerro, J.A., Grau-Sánchez, M., Grau, A., Hernández, M.A., Noguera, M., Romero, N.: On iterative methods with accelerated convergence for solving systems of nonlinear equations. J. Optim. Theory Appl. 151, 163–174 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Brezinski, C.: Accélération de la Convergence en Analyse Numérique. Lecture Notes in Mathematics. Springer, Berlin (1977), 584 pp. zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Miquel Grau-Sánchez
    • 1
  • Miquel Noguera
    • 1
  • José M. Gutiérrez
    • 2
    Email author
  1. 1.Dept. of Applied Mathematics IITechnical University of CataloniaBarcelonaSpain
  2. 2.Dept. of Mathematics and ComputingUniversity of La RiojaLogroñoSpain

Personalised recommendations