Skip to main content
Log in

Conditional Optimization Problems: Fractional Order Case

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this manuscript, we introduce a new formulation for the constrained optimization problems in which the objective function is considered in the fractional integral form. The constraints are applied in two separate cases, namely, fractional differential and fractional isoperimetric constraints. In both cases, by using the extended Euler–Lagrange equations and the Lagrange multiplier method, the necessary conditions are obtained. An example is given in order to illustrate the effectiveness of the reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vinter, V.: Optimal Control. Birkhauser, Boston (2010)

    Book  MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Goldfain, E.: Fractional dynamics and the standard model for particle physics. Commun. Nonlinear Sci. Numer. Simul. 13(7), 1397–1404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Battle, V.F., Perez, R.V., Rodriguez, L.S.: Fractional robust control of main irrigation canals with dynamic parameters. Control Eng. Pract. 15(6), 673–686 (2007)

    Article  Google Scholar 

  6. Razminia, A., Majid, V.J., Baleanu, D.: Chaotic incommensurate fractional order Rössler system: active control and synchronization. Adv. Differ. Equ. 15, 1–12 (2011)

    Google Scholar 

  7. Liu, F., Burrage, K.: Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput. Math. Appl. 62(3), 822–833 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Thao, T.H.: An approximate approach to fractional analysis for finance. Nonlinear Anal., Real World Appl. 7(1), 124–132 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.J.: On the fractional signals and systems. Signal Process. 91(3), 350–371 (2011)

    Article  MATH  Google Scholar 

  10. Razminia, A., Majd, V.J., Dizaji, A.F.: An extended formulation of calculus of variations for incommensurate fractional derivatives with fractional performance index. Nonlinear Dyn. 69(3), 1263–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yousefi, S.A., Dehghan, M., Lotfi, A.: Generalized Euler–Lagrange equations for fractional variational problems with free boundary conditions. Comput. Math. Appl. 62(3), 987–995 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119(1), 73–79 (2004)

    Google Scholar 

  13. Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational principles with delay within Caputo derivatives. Rep. Math. Phys. 65(1), 17–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13(9–10), 1269–1281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53(1–2), 67–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Agrawal, O.P.: Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. 59(5), 1852–1864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Odzijewicz, T., Torres, D.F.M.: Fractional calculus of variations for double integrals. Balk. J. Geom. Appl. 16(2), 102–113 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl. (2012). doi:10.1016/j.camwa.2012.01.073

    MathSciNet  Google Scholar 

  20. Troya, J.M., Ortega, M.: A study of parallel branch-and-bound algorithms with best-bound-first search. Parallel Comput. 11, 121–126 (1989)

    Article  MATH  Google Scholar 

  21. Chung, C.S., Flynn, J., Kirca, O.: A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems. Int. J. Prod. Econ. 79, 185–196 (2002)

    Article  Google Scholar 

  22. Lynce, I., Marques-Silva, J.: Random backtracking in backtrack search algorithms for satisfiability. Discrete Appl. Math. 155, 1604–1612 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ito, K., Kunisch, K.: Semi-smooth newton methods for state-constrained optimal control problems. Syst. Control Lett. 50, 221–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58(1–2), 385–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Oldham, K.B., Spanier, J.: The Fractional Calculus. Mathematics in Science and Engineering. Academic Press, San Diego (1974)

    Google Scholar 

  27. Podlubny, I., Chen, Y.Q.: Adjoint fractional differential expressions and operators. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007, Las Vegas, Nevada, USA (2007)

    Google Scholar 

  28. Tricaud, C., Chen, Y.Q.: An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59(5), 1644–1655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razminia, A., Baleanu, D. & Majd, V.J. Conditional Optimization Problems: Fractional Order Case. J Optim Theory Appl 156, 45–55 (2013). https://doi.org/10.1007/s10957-012-0211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0211-6

Keywords

Navigation