Abstract
In this manuscript, we introduce a new formulation for the constrained optimization problems in which the objective function is considered in the fractional integral form. The constraints are applied in two separate cases, namely, fractional differential and fractional isoperimetric constraints. In both cases, by using the extended Euler–Lagrange equations and the Lagrange multiplier method, the necessary conditions are obtained. An example is given in order to illustrate the effectiveness of the reported results.
Similar content being viewed by others
References
Vinter, V.: Optimal Control. Birkhauser, Boston (2010)
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication. Wiley, New York (1993)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Goldfain, E.: Fractional dynamics and the standard model for particle physics. Commun. Nonlinear Sci. Numer. Simul. 13(7), 1397–1404 (2008)
Battle, V.F., Perez, R.V., Rodriguez, L.S.: Fractional robust control of main irrigation canals with dynamic parameters. Control Eng. Pract. 15(6), 673–686 (2007)
Razminia, A., Majid, V.J., Baleanu, D.: Chaotic incommensurate fractional order Rössler system: active control and synchronization. Adv. Differ. Equ. 15, 1–12 (2011)
Liu, F., Burrage, K.: Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput. Math. Appl. 62(3), 822–833 (2011)
Thao, T.H.: An approximate approach to fractional analysis for finance. Nonlinear Anal., Real World Appl. 7(1), 124–132 (2006)
Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.J.: On the fractional signals and systems. Signal Process. 91(3), 350–371 (2011)
Razminia, A., Majd, V.J., Dizaji, A.F.: An extended formulation of calculus of variations for incommensurate fractional derivatives with fractional performance index. Nonlinear Dyn. 69(3), 1263–1284 (2012)
Yousefi, S.A., Dehghan, M., Lotfi, A.: Generalized Euler–Lagrange equations for fractional variational problems with free boundary conditions. Comput. Math. Appl. 62(3), 987–995 (2011)
Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119(1), 73–79 (2004)
Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational principles with delay within Caputo derivatives. Rep. Math. Phys. 65(1), 17–28 (2010)
Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1490–1500 (2011)
Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13(9–10), 1269–1281 (2007)
Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53(1–2), 67–74 (2008)
Agrawal, O.P.: Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. 59(5), 1852–1864 (2010)
Odzijewicz, T., Torres, D.F.M.: Fractional calculus of variations for double integrals. Balk. J. Geom. Appl. 16(2), 102–113 (2011)
Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl. (2012). doi:10.1016/j.camwa.2012.01.073
Troya, J.M., Ortega, M.: A study of parallel branch-and-bound algorithms with best-bound-first search. Parallel Comput. 11, 121–126 (1989)
Chung, C.S., Flynn, J., Kirca, O.: A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems. Int. J. Prod. Econ. 79, 185–196 (2002)
Lynce, I., Marques-Silva, J.: Random backtracking in backtrack search algorithms for satisfiability. Discrete Appl. Math. 155, 1604–1612 (2007)
Ito, K., Kunisch, K.: Semi-smooth newton methods for state-constrained optimal control problems. Syst. Control Lett. 50, 221–228 (2003)
Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58(1–2), 385–391 (2009)
Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)
Oldham, K.B., Spanier, J.: The Fractional Calculus. Mathematics in Science and Engineering. Academic Press, San Diego (1974)
Podlubny, I., Chen, Y.Q.: Adjoint fractional differential expressions and operators. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007, Las Vegas, Nevada, USA (2007)
Tricaud, C., Chen, Y.Q.: An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59(5), 1644–1655 (2010)
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Razminia, A., Baleanu, D. & Majd, V.J. Conditional Optimization Problems: Fractional Order Case. J Optim Theory Appl 156, 45–55 (2013). https://doi.org/10.1007/s10957-012-0211-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-012-0211-6