Skip to main content
Log in

A Reproducing Kernel Hilbert Space Method for Solving Integro-Differential Equations of Fractional Order

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this article, we implement a relatively new analytical technique, the reproducing kernel Hilbert space method (RKHSM), for solving integro-differential equations of fractional order. The solution obtained by using the method takes the form of a convergent series with easily computable components. Two numerical examples are studied to demonstrate the accuracy of the present method. The present work shows the validity and great potential of the reproducing kernel Hilbert space method for solving linear and nonlinear integro-differential equations of fractional order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leszczynski, J.S.: An Introduction to Fractional Mechanics. Czestochowa University of Technology, Czestochowa (2011)

    Google Scholar 

  2. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    Google Scholar 

  3. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)

    Article  Google Scholar 

  4. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  5. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  6. Momani, S.: Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method. Appl. Math. Comput. 165(2), 459–472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Momani, S.: Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl. Math. Comput. 170, 1126–1134 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Momani, S., Odibat, Z., Alawneh, A.: Variational iteration method for solving the space- and time-fractional KdV equation. Numer. Methods Partial Differ. Equ. 24(1), 262–271 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Odibat, Z., Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58, 2199–2208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Odibat, Z., Momani, S., Ertürk, V.S.: Generalized differential transform method: application to differential equations of fractional order. Appl. Math. Comput. 197, 467–477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Odibat, Z., Momani, S.: A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor’s formula. J. Comput. Appl. Math. 220, 85–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Radwan, A.G., Moaddy, K., Momani, S.: Stability and nonstandard finite difference method of the generalized Chua’s circuit. Comput. Math. Appl. (in press)

  13. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002)

  14. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 26, 31–52 (2004)

    Article  MathSciNet  Google Scholar 

  15. Zurigat, M., Momani, S., Odibat, Z., Alawneh, A.: The homotopy analysis method for handling systems of fractional differential equations. Appl. Math. Model. 34, 24–35 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Odibat, Z., Momani, S., Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 34, 593–600 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hashim, I., Abdulaziz, O., Momani, S.: Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 14, 674–684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cui, M.G., Lin, Y.Z.: Nonlinear Numerical Analysis in Reproducing Kernel Hilbert Space. Nova Science, New York (2009)

    Google Scholar 

  19. Zhou, Y.F., Lin, Y.Z., Cui, M.G.: A computational method for nonlinear 2m-th order boundary value problems. Math. Model. Anal. 15, 571–586 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, Z., Lin, Y.Z.: The exact solution of a linear integral equation with weakly singular kernel. J. Math. Anal. Appl. 344, 726–734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, Y.Z., Zhou, Y.F.: Solving nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space. Numer. Algorithms 52, 173–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cui, M.G., Li, Ch.L.: The exact solution for solving a class nonlinear operator equations in the reproducing kernel space. Appl. Math. Comput. 143, 393–399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaher Momani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushnaq, S., Momani, S. & Zhou, Y. A Reproducing Kernel Hilbert Space Method for Solving Integro-Differential Equations of Fractional Order. J Optim Theory Appl 156, 96–105 (2013). https://doi.org/10.1007/s10957-012-0207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0207-2

Keywords

Navigation