Skip to main content
Log in

A Generalized Univariate Newton Method Motivated by Proximal Regularization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We devise a new generalized univariate Newton method for solving nonlinear equations, motivated by Bregman distances and proximal regularization of optimization problems. We prove quadratic convergence of the new method, a special instance of which is the classical Newton method. We illustrate the possible benefits of the new method over the classical Newton method by means of test problems involving the Lambert W function, Kullback–Leibler distance, and a polynomial. These test problems provide insight as to which instance of the generalized method could be chosen for a given nonlinear equation. Finally, we derive a closed-form expression for the asymptotic error constant of the generalized method and make further comparisons involving this constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aragón-Artacho, F.J., Dontchev, A.L., Gaydu, M., Geoffroy, M.H., Veliov, V.M.: Metric regularity of Newton’s iteration. SIAM J. Control Optim. 49, 339–362 (2011)

    Article  MathSciNet  Google Scholar 

  2. Diniz-Ehrhardt, M.A., Gomes-Ruggiero, M.A., Lopes, V.L.R., Martínez, J.M.: Discrete Newton’s method with local variations for solving large-scale nonlinear systems. Optimization 52, 417–440 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dontchev, A.L., Hager, W.W., Veliov, V.M.: Uniform convergence and mesh independence of Newton’s method for discretized variational problems. SIAM J. Control Optim. 39, 961–980 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ford, W.F., Pennline, J.A.: Accelerated convergence in Newton’s method. SIAM Rev. 38, 658–659 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hoheisel, T., Kanzow, C., Mordukhovich, B.S., Phan, H.: Generalized Newton’s method based on graphical derivatives. Nonlinear Anal. 75, 1324–1340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  7. Martínez, J.M.: Fixed-point quasi-Newton methods. SIAM J. Numer. Anal. 29, 1413–1434 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Martínez, J.M.: Practical quasi-Newton methods for solving nonlinear systems. J. Comput. Appl. Math. 124, 97–122 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  10. Polyak, B.T.: Newton’s method and its use in optimization. Eur. J. Oper. Res. 181, 1086–1096 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Thorlund-Petersen, L.: Global convergence of Newton’s method on an interval. Math. Methods Oper. Res. 59, 91–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tseng, C.-L.: A Newton-type univariate optimization algorithm for locating the nearest extremum. Eur. J. Oper. Res. 105, 236–246 (1998)

    Article  MATH  Google Scholar 

  14. Burachik, R.S., Iusem, A.N.: A generalized proximal point algorithm for the variational inequality problem in a Hilbert space. SIAM J. Optim. 8, 197–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Butnariu, D., Kassay, G.: A proximal-projection method for finding zeroes of set-valued operators. SIAM J. Control Optim. 47, 2096–2136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bergman functions. SIAM J. Optim. 3, 538–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Optimization and Its Applications, vol. 8. Springer, New York (2008)

    Google Scholar 

  18. Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Thompson Brooks/Cole, Belmont (2011)

    Google Scholar 

  19. Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  20. Rockafellar, R.T.: Convex Analysis. Princeton Univ. Press, Princeton (1970)

    MATH  Google Scholar 

  21. Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  22. Corless, R.M., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Belen, S., Kaya, C.Y., Pearce, C.E.M.: Impulsive control of rumours with two broadcasts. ANZIAM J. 46, 379–391 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s majorants principle for Newton’s method. Comput. Optim. Appl. 42, 213–229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Gábor Kassay for motivating discussions on antiresolvents of proximal-projection methods during his visit to the School of Mathematics and Statistics at the University of South Australia. The iteration formula (15) in Lemma 4.1 is an interpretation of Roberto Cominetti after seeing our generalized Newton iteration formula in (3). The authors are indebted to him for his observation, which consequently made the proof of Theorem 4.1 neater. They also thank the referees, whose comments and suggestions improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yalçın Kaya.

Additional information

Communicated by Liqun Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burachik, R.S., Kaya, C.Y. & Sabach, S. A Generalized Univariate Newton Method Motivated by Proximal Regularization. J Optim Theory Appl 155, 923–940 (2012). https://doi.org/10.1007/s10957-012-0095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0095-5

Keywords

Navigation