Multicriteria Engineering Optimization Problems: Statement, Solution and Applications

Abstract

The majority of engineering optimization problems (design, identification, design of controlled systems, optimization of large-scale systems, operational development of prototypes, and so on) are essentially multicriteria. The correct determination of the feasible solution set is a major challenge in engineering optimization problems. In order to construct the feasible solution set, a method called PSI (Parameter Space Investigation) has been created and successfully integrated into various fields of industry, science, and technology. Owing to the PSI method, it has become possible to formulate and solve a wide range of multicriteria optimization problems. In addition to giving an overview of the PSI method, this paper also describes the methods for approximation of the feasible and Pareto optimal solution sets, identification, decomposition, and aggregation of the large-scale systems.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    After the analysis of the test tables and the correction of the functional constraints, some of the unfeasible solutions can become feasible ones [1, 7].

References

  1. 1.

    Statnikov, R., Statnikov, A.: The Parameter Space Investigation Method Toolkit. Artech House, Boston (2011)

    Google Scholar 

  2. 2.

    Statnikov, R., Matusov, J.: Multicriteria Analysis in Engineering. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  3. 3.

    Statnikov, R., Matusov, J.: Multicriteria Optimization and Engineering. Chapman & Hall, New York (1995)

    Google Scholar 

  4. 4.

    Statnikov, R.: Multicriteria Design: Optimization and Identification. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  5. 5.

    Sobol’, I.M., Statnikov, R.B.: Selecting Optimal Parameters Multicriteria Problems, 2nd edn. Drofa, Moscow (2006) (in Russian)

    Google Scholar 

  6. 6.

    Statnikov, R.B., Matusov, J.B.: Use of P τ nets for the approximation of the Edgeworth-Pareto set in multicriteria optimization. J. Optim. Theory Appl. 91(3), 543–560 (1996)

    MATH  Article  MathSciNet  Google Scholar 

  7. 7.

    Statnikov, A., Astashev, V., Matusov, J., Toporkov, M., P’iankov, K., Statnikov, A., Yakovlev, E., Yanushkevich, I.: MOVI 1.4 (multicriteria optimization and vector identification) software package, certificate of registration, register of copyrights. USA, Registration Number TXU 1-698-418, Date of Registration: May 22, 2010

  8. 8.

    Dempe, S.: Foundations of Bilevel Programming. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (2010)

    Google Scholar 

  9. 9.

    Statnikov, R., Anil, K., Bordetsky, A., Statnikov, A.: Visualization approaches for the prototype improvement problem. J. Multi-Criteria Decis. Anal. 15, 45–61 (2008)

    Article  Google Scholar 

  10. 10.

    Lichtenstein, S., Slovic, P.: The Construction of Preference. Cambridge University Press, New York (2006)

    Google Scholar 

  11. 11.

    Weyl, H.: Uber die gleichverteilung von zahlen mod. Eins. Math. Ann. 77(3), 313–352 (1916)

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  Google Scholar 

  13. 13.

    Hammersley, J.M.: Monte Carlo methods for solving multivariable problems. Ann. N.Y. Acad. Sci. 86, 844–874 (1960)

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Hlawka, E., Taschner, R.: Geometric and Analytic Number Theory. Springer, Berlin (1991)

    Google Scholar 

  15. 15.

    Faure, H.: Discrépance de suites associées à un système de numération (en dimension s). In: Acta Arith, vol. 41, pp. 337–351 (1982) (in French)

    Google Scholar 

  16. 16.

    Niederreiter, H.: Statistical independence properties of pseudorandom vectors produced by matrix generators. J. Comput. Appl. Math. 31, 139–151 (1990)

    MATH  Article  MathSciNet  Google Scholar 

  17. 17.

    Dick, J., Niederreiter, H.: On the exact t-value of Niederreiter and Sobol’ sequences. J. Complex. 24(5–6), 572–581 (2008)

    MATH  Article  MathSciNet  Google Scholar 

  18. 18.

    Anil, K.A.: Multi-Criteria Analysis in Naval Ship Design. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA (2005)

  19. 19.

    Statnikov, R., Anil, K., Bordetsky, A., Statnikov, A.: Visualization tools for multicriteria analysis of the prototype improvement problem. In: Proceedings of the First IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM 2007), Honolulu, Hawaii, USA (2007)

    Google Scholar 

  20. 20.

    Statnikov, R., Bordetsky, A., Matusov, J., Sobol’, I., Statnikov, A.: Definition of the feasible solution set in multicriteria optimization problems with continuous, discrete, and mixed design variables. Nonlinear Anal. 71(12), e109–e117 (2009)

    MATH  Article  Google Scholar 

  21. 21.

    Matusov, J., Statnikov, R.: Approximation and regularization in vector optimization problems. In: Problems and Methods of Decision Making in Managerial Systems, pp. 56–62. The Institute for Systems Science (VNIISI), Moscow (1985) (in Russian)

    Google Scholar 

  22. 22.

    Sobol’, I.: Multidimensional Quadrature Formulas and Haar Functions. Nauka, Moscow (1969) (in Russian)

    Google Scholar 

  23. 23.

    Sobol’, I.: On functions satisfying the Lipschitz condition in multidimensional problems of computational mathematics. Dokl. Akad. Nauk SSSR 293(6), 1314–1319 (1987) (in Russian)

    MathSciNet  Google Scholar 

  24. 24.

    Statnikov, R., Matusov, J.: Multicriteria Machine Design. Znaniye, Moscow (1989) (in Russian)

    Google Scholar 

  25. 25.

    Lieberman, E.: Multi-Objective Programming in the USSR. Academic Press, New York (1991)

    Google Scholar 

  26. 26.

    Ozernoy, V.: Multiple criteria decision making in the USSR: A survey. Nav. Res. Logist. 35, 543–566 (1988)

    Article  MathSciNet  Google Scholar 

  27. 27.

    White, D.: A bibliography on the applications of mathematical programming multiple-objective methods. J. Oper. Res. Soc. 41(8), 669–691 (1990)

    MATH  Google Scholar 

  28. 28.

    Vasil’ev, F.: Methods of Solving Extremum Problems. Nauka, Moscow (1981) (in Russian)

    Google Scholar 

  29. 29.

    Kelley, J.L.: General Topology. Van Nostrand Reinhold, New York (1957)

    Google Scholar 

  30. 30.

    Matusov, J., Statnikov, R.: Approximation and vector optimization of large systems. Dokl. Akad. Nauk SSSR 296(3), 532–536 (1987) (in Russian)

    MathSciNet  Google Scholar 

  31. 31.

    Graupe, D.: Identification of Systems. Robert E. Krieger Publishing Company, Huntington (1976)

    Google Scholar 

  32. 32.

    Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  33. 33.

    Yakimenko, O.A., Statnikov, R.B.: On multicriteria parametric identification of the cargo parafoil model with the of PSI method. In: Proceedings of the 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminary (AIAA 2005), Munich, Germany (2005)

    Google Scholar 

  34. 34.

    Dobrokhodov, V., Statnikov, R.: Multi-criteria identification of a controllable descending system. In: Proceedings of the First IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM 2007), Honolulu, Hawaii, USA (2007)

    Google Scholar 

  35. 35.

    Statnikov, R., Bordetsky, A., Statnikov, A.: Multicriteria analysis tools in real-life problems. Comput. Math. Appl. 52(1–2), 1–32 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  36. 36.

    Dobrokhodov, V., Statnikov, R., Statnikov, A., Yanushkevich, I.: Modeling and simulation framework for multiple objective identification of a controllable descending system. In: Proceedings of the International Conference on Adaptive Modeling and Simulation (ADMOS), Geteborg, Sweden (2003)

    Google Scholar 

  37. 37.

    Statnikov, R., Bordetsky, A., Statnikov, A.: Multicriteria analysis of real-life engineering optimization problems: statement and solution. Nonlinear Anal. 63, e685–e696 (2005)

    MATH  Article  Google Scholar 

  38. 38.

    Zverev, I.A.: Vector identification of the parameters of spindle units of metal-cutting machines. J. Mach. Manuf. Reliab. 6, 58–63 (1997)

    Google Scholar 

  39. 39.

    Bondarenko, M.I., Nazemkin, A.Y., Pozhalostin, A.A., Statnikov, R.B., Shenfel’d, V.S.: Construction of consistent solutions in multicriteria problems of optimization of large systems. Phys.-Dokl. 39(4), 274–279 (1994)

    Google Scholar 

  40. 40.

    Xargay, E., Hovakimyan, N., Dobrokhodov, V., Statnikov, R.B., Kaminer, I., Cao, C., Gregory, I.M.: L 1 adaptive flight control system: systematic design and V&V of control metrics. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada (2010)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. N.N. Bolotnik for his feedback and discussion of the results.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Statnikov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Statnikov, R., Matusov, J. & Statnikov, A. Multicriteria Engineering Optimization Problems: Statement, Solution and Applications. J Optim Theory Appl 155, 355–375 (2012). https://doi.org/10.1007/s10957-012-0083-9

Download citation

Keywords

  • Feasible solution set
  • Visualization tools
  • PSI method
  • MOVI software
  • Uniformly distributed sequences