Journal of Optimization Theory and Applications

, Volume 155, Issue 2, pp 355–375 | Cite as

Multicriteria Engineering Optimization Problems: Statement, Solution and Applications

  • Roman Statnikov
  • Josef Matusov
  • Alexander Statnikov
Invited paper

Abstract

The majority of engineering optimization problems (design, identification, design of controlled systems, optimization of large-scale systems, operational development of prototypes, and so on) are essentially multicriteria. The correct determination of the feasible solution set is a major challenge in engineering optimization problems. In order to construct the feasible solution set, a method called PSI (Parameter Space Investigation) has been created and successfully integrated into various fields of industry, science, and technology. Owing to the PSI method, it has become possible to formulate and solve a wide range of multicriteria optimization problems. In addition to giving an overview of the PSI method, this paper also describes the methods for approximation of the feasible and Pareto optimal solution sets, identification, decomposition, and aggregation of the large-scale systems.

Keywords

Feasible solution set Visualization tools PSI method MOVI software Uniformly distributed sequences 

Notes

Acknowledgement

The authors would like to thank Dr. N.N. Bolotnik for his feedback and discussion of the results.

References

  1. 1.
    Statnikov, R., Statnikov, A.: The Parameter Space Investigation Method Toolkit. Artech House, Boston (2011) Google Scholar
  2. 2.
    Statnikov, R., Matusov, J.: Multicriteria Analysis in Engineering. Kluwer Academic Publishers, Dordrecht (2002) MATHGoogle Scholar
  3. 3.
    Statnikov, R., Matusov, J.: Multicriteria Optimization and Engineering. Chapman & Hall, New York (1995) CrossRefGoogle Scholar
  4. 4.
    Statnikov, R.: Multicriteria Design: Optimization and Identification. Kluwer Academic Publishers, Dordrecht (1999) Google Scholar
  5. 5.
    Sobol’, I.M., Statnikov, R.B.: Selecting Optimal Parameters Multicriteria Problems, 2nd edn. Drofa, Moscow (2006) (in Russian) Google Scholar
  6. 6.
    Statnikov, R.B., Matusov, J.B.: Use of Pτ nets for the approximation of the Edgeworth-Pareto set in multicriteria optimization. J. Optim. Theory Appl. 91(3), 543–560 (1996) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Statnikov, A., Astashev, V., Matusov, J., Toporkov, M., P’iankov, K., Statnikov, A., Yakovlev, E., Yanushkevich, I.: MOVI 1.4 (multicriteria optimization and vector identification) software package, certificate of registration, register of copyrights. USA, Registration Number TXU 1-698-418, Date of Registration: May 22, 2010 Google Scholar
  8. 8.
    Dempe, S.: Foundations of Bilevel Programming. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (2010) Google Scholar
  9. 9.
    Statnikov, R., Anil, K., Bordetsky, A., Statnikov, A.: Visualization approaches for the prototype improvement problem. J. Multi-Criteria Decis. Anal. 15, 45–61 (2008) CrossRefGoogle Scholar
  10. 10.
    Lichtenstein, S., Slovic, P.: The Construction of Preference. Cambridge University Press, New York (2006) CrossRefGoogle Scholar
  11. 11.
    Weyl, H.: Uber die gleichverteilung von zahlen mod. Eins. Math. Ann. 77(3), 313–352 (1916) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hammersley, J.M.: Monte Carlo methods for solving multivariable problems. Ann. N.Y. Acad. Sci. 86, 844–874 (1960) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hlawka, E., Taschner, R.: Geometric and Analytic Number Theory. Springer, Berlin (1991) MATHCrossRefGoogle Scholar
  15. 15.
    Faure, H.: Discrépance de suites associées à un système de numération (en dimension s). In: Acta Arith, vol. 41, pp. 337–351 (1982) (in French) Google Scholar
  16. 16.
    Niederreiter, H.: Statistical independence properties of pseudorandom vectors produced by matrix generators. J. Comput. Appl. Math. 31, 139–151 (1990) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dick, J., Niederreiter, H.: On the exact t-value of Niederreiter and Sobol’ sequences. J. Complex. 24(5–6), 572–581 (2008) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Anil, K.A.: Multi-Criteria Analysis in Naval Ship Design. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA (2005) Google Scholar
  19. 19.
    Statnikov, R., Anil, K., Bordetsky, A., Statnikov, A.: Visualization tools for multicriteria analysis of the prototype improvement problem. In: Proceedings of the First IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM 2007), Honolulu, Hawaii, USA (2007) Google Scholar
  20. 20.
    Statnikov, R., Bordetsky, A., Matusov, J., Sobol’, I., Statnikov, A.: Definition of the feasible solution set in multicriteria optimization problems with continuous, discrete, and mixed design variables. Nonlinear Anal. 71(12), e109–e117 (2009) MATHCrossRefGoogle Scholar
  21. 21.
    Matusov, J., Statnikov, R.: Approximation and regularization in vector optimization problems. In: Problems and Methods of Decision Making in Managerial Systems, pp. 56–62. The Institute for Systems Science (VNIISI), Moscow (1985) (in Russian) Google Scholar
  22. 22.
    Sobol’, I.: Multidimensional Quadrature Formulas and Haar Functions. Nauka, Moscow (1969) (in Russian) Google Scholar
  23. 23.
    Sobol’, I.: On functions satisfying the Lipschitz condition in multidimensional problems of computational mathematics. Dokl. Akad. Nauk SSSR 293(6), 1314–1319 (1987) (in Russian) MathSciNetGoogle Scholar
  24. 24.
    Statnikov, R., Matusov, J.: Multicriteria Machine Design. Znaniye, Moscow (1989) (in Russian) Google Scholar
  25. 25.
    Lieberman, E.: Multi-Objective Programming in the USSR. Academic Press, New York (1991) MATHGoogle Scholar
  26. 26.
    Ozernoy, V.: Multiple criteria decision making in the USSR: A survey. Nav. Res. Logist. 35, 543–566 (1988) CrossRefMathSciNetGoogle Scholar
  27. 27.
    White, D.: A bibliography on the applications of mathematical programming multiple-objective methods. J. Oper. Res. Soc. 41(8), 669–691 (1990) MATHGoogle Scholar
  28. 28.
    Vasil’ev, F.: Methods of Solving Extremum Problems. Nauka, Moscow (1981) (in Russian) Google Scholar
  29. 29.
    Kelley, J.L.: General Topology. Van Nostrand Reinhold, New York (1957) Google Scholar
  30. 30.
    Matusov, J., Statnikov, R.: Approximation and vector optimization of large systems. Dokl. Akad. Nauk SSSR 296(3), 532–536 (1987) (in Russian) MathSciNetGoogle Scholar
  31. 31.
    Graupe, D.: Identification of Systems. Robert E. Krieger Publishing Company, Huntington (1976) MATHGoogle Scholar
  32. 32.
    Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Englewood Cliffs (1987) MATHGoogle Scholar
  33. 33.
    Yakimenko, O.A., Statnikov, R.B.: On multicriteria parametric identification of the cargo parafoil model with the of PSI method. In: Proceedings of the 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminary (AIAA 2005), Munich, Germany (2005) Google Scholar
  34. 34.
    Dobrokhodov, V., Statnikov, R.: Multi-criteria identification of a controllable descending system. In: Proceedings of the First IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM 2007), Honolulu, Hawaii, USA (2007) Google Scholar
  35. 35.
    Statnikov, R., Bordetsky, A., Statnikov, A.: Multicriteria analysis tools in real-life problems. Comput. Math. Appl. 52(1–2), 1–32 (2006) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Dobrokhodov, V., Statnikov, R., Statnikov, A., Yanushkevich, I.: Modeling and simulation framework for multiple objective identification of a controllable descending system. In: Proceedings of the International Conference on Adaptive Modeling and Simulation (ADMOS), Geteborg, Sweden (2003) Google Scholar
  37. 37.
    Statnikov, R., Bordetsky, A., Statnikov, A.: Multicriteria analysis of real-life engineering optimization problems: statement and solution. Nonlinear Anal. 63, e685–e696 (2005) MATHCrossRefGoogle Scholar
  38. 38.
    Zverev, I.A.: Vector identification of the parameters of spindle units of metal-cutting machines. J. Mach. Manuf. Reliab. 6, 58–63 (1997) Google Scholar
  39. 39.
    Bondarenko, M.I., Nazemkin, A.Y., Pozhalostin, A.A., Statnikov, R.B., Shenfel’d, V.S.: Construction of consistent solutions in multicriteria problems of optimization of large systems. Phys.-Dokl. 39(4), 274–279 (1994) Google Scholar
  40. 40.
    Xargay, E., Hovakimyan, N., Dobrokhodov, V., Statnikov, R.B., Kaminer, I., Cao, C., Gregory, I.M.: L 1 adaptive flight control system: systematic design and V&V of control metrics. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada (2010) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Roman Statnikov
    • 1
    • 2
  • Josef Matusov
    • 2
  • Alexander Statnikov
    • 3
  1. 1.Department of Information SciencesNaval Postgraduate SchoolMontereyUSA
  2. 2.Mechanical Engineering Research InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Center for Health Informatics and BioinformaticsNew York University Langone Medical CenterNew YorkUSA

Personalised recommendations