Advertisement

Journal of Optimization Theory and Applications

, Volume 155, Issue 2, pp 707–722 | Cite as

Risk-Return Trade-off with the Scenario Approach in Practice: A Case Study in Portfolio Selection

  • B. K. Pagnoncelli
  • D. Reich
  • M. C. Campi
Article

Abstract

We consider the scenario approach for chance constrained programming problems. Building on existing theoretical results, effective and readily applicable methodologies to achieve suitable risk-return trade-offs are developed in this paper. Unlike other approaches, that require solving non-convex optimization problems, our methodology consists of solving multiple convex optimization problems obtained by sampling and removing some of the constraints. More specifically, two constraint removal schemes are introduced, one greedy and the other randomized, and a comparison between them is provided in a detailed computational study in portfolio selection. Other practical aspects of the procedures are also discussed. The removal schemes proposed in this paper are generalizable to a wide range of practical problems.

Keywords

Chance constrained programming Scenario approximation Portfolio selection 

References

  1. 1.
    Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17, 969–996 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Dentcheva, D., Prékopa, A., Ruszczynski, A.: Concavity and efficient points of discrete distributions in probabilistic programming. Math. Program. 89, 55–77 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Prékopa, A.: Dual method for the solution of a one-stage stochastic programming problem with random rhs obeying a discrete probability distribution. Math. Methods Oper. Res. 34, 441–461 (1990) zbMATHCrossRefGoogle Scholar
  4. 4.
    Tanner, M.W., Ntaimo, L.: IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation. Eur. J. Oper. Res. 207, 290–296 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122, 247–272 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132, 31–56 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Lejeune, M.: Pattern-based modeling and solution of probabilistically constrained optimization problems. SPEPS 2010, 5 (2010). http://edoc.hu-berlin.de/browsing/speps/ Google Scholar
  8. 8.
    Calafiore, G., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102, 25–46 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of robust convex programs. SIAM J. Optim. 19, 1211–1230 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Campi, M.C., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theory Appl. 148, 257–280 (2010) MathSciNetCrossRefGoogle Scholar
  11. 11.
    McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management. Princeton University Press, Princeton (2005) zbMATHGoogle Scholar
  12. 12.
    Pagnoncelli, B.K., Ahmed, S., Shapiro, A.: Computational study of a chance constrained portfolio selection problem. J. Optim. Theory Appl. 142, 399–416 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–14 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009) zbMATHCrossRefGoogle Scholar
  15. 15.
    Shapiro, A., Philpott, A.: A tutorial on stochastic programming. Manuscript. Available at www2.isye.gatech.edu/~ashapiro/publications.html (2007)
  16. 16.
    Wand, Y., Chen, Z., Zhang, K.: A chance-constrained portfolio selection problem under t-distribution. Asia-Pac. J. Oper. Res. 24, 535–556 (2007) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lejeune, M.: A var Black-Litterman model for the construction of absolute return fund-of-funds. Quant. Finance 11, 1489–1501 (2011) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nemirovski, A., Shapiro, A.: Scenario approximations of chance constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design under Uncertainty, pp. 3–47. Springer, London (2006) CrossRefGoogle Scholar
  19. 19.
    Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Law, A., Kelton, W.D.: Simulation Modeling and Analysis. McGraw-Hill, New York (2000) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Escuela de NegociosUniversidad Adolfo IbañezSantiagoChile
  2. 2.Ford Research and Advanced EngineeringDearbornUSA
  3. 3.Department of Information EngineeringUniversity of BresciaBresciaItaly

Personalised recommendations