Journal of Optimization Theory and Applications

, Volume 155, Issue 1, pp 145–164 | Cite as

Exact Penalty and Optimality Condition for Nonseparable Continuous Piecewise Linear Programming

  • Xiaolin Huang
  • Jun Xu
  • Shuning WangEmail author


Utilizing compact representations for continuous piecewise linear functions, this paper discusses some theoretical properties for nonseparable continuous piecewise linear programming. The existence of exact penalty for continuous piecewise linear programming is proved, which allows us to concentrate on unconstrained problems. For unconstrained problems, we give a sufficient and necessary local optimality condition, which is based on a model with universal representation capability and hence applicable to arbitrary continuous piecewise linear programming. From the gained optimality condition, an algorithm is proposed and evaluated by numerical experiments, where the theoretical properties are illustrated as well.


Piecewise linear Nonlinear programming Exact penalty Local optimality condition 



This research was supported jointly by the National Natural Science Foundation of China (61074118, 60974008, 61104218, 041306020) and the Research Fund of Doctoral Program of Higher Education (200800030029).

The authors appreciate the reviewers for their insightful comments and helpful suggestions.


  1. 1.
    Beale, E.M.L., Coen, P.J., Flowerdew, A.D.J.: Separable programming applied to an ore purchasing problem. J. R. Stat. Soc., Ser. C, Appl. Stat. 14, 89–101 (1965) CrossRefGoogle Scholar
  2. 2.
    Beale, E.M.L.: Numerical methods: the theory of separable programming. In: Abadie, J., Vajda, S. (eds.) Nonlinear Programming, pp. 174–177. North-Holland, Amsterdam (1967) Google Scholar
  3. 3.
    Conn, A.R., Mongeau, M.: Discontinuous piecewise linear optimization. Math. Program. 80, 315–380 (1998) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Fourer, R.: A simplex algorithm for piecewise-linear programming I: Derivation and proof. Math. Program. 33, 204–233 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fourer, R.: A simplex algorithm for piecewise-linear programming II: Finiteness, feasibility and degeneracy. Math. Program. 41, 281–315 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fourer, R.: A simplex algorithm for piecewise-linear programming III: Computational analysis and applications. Math. Program. 53, 213–235 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Padberg, M.W.: Approximation separable nonlinear functions via mixed zero-one programs. Oper. Res. Lett. 27, 1–5 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Croxton, K.L., Gendron, B., Magnanti, T.L.: Models and methods for merge-in-transit operations. Transp. Sci. 37, 1–22 (2003) CrossRefGoogle Scholar
  9. 9.
    Keha, A.B., de Farias, I.R., Nemhauser, G.L.: Models for representing piecewise linear cost functions. Oper. Res. Lett. 32, 44–48 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Vielma, J.P., Keha, A.B., Nemhauser, G.L.: Nonconvex, lower semicontinuous piecewise linear optimization. Discrete Optim. 5, 467–488 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58, 303–315 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chua, L.O., Kang, S.M.: Section-wise piecewise-linear functions: canonical representation, properties, and applications. Proc. IEEE 65, 915–929 (1977) CrossRefGoogle Scholar
  13. 13.
    Breiman, L.: Hinging hyperplanes for regression, classification and function approximation. IEEE Trans. Inf. Theory 39, 999–1013 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Julián, P., Desages, A., Agamennoni, O.: High-level canonical piecewise linear representation using a simplicial partition. IEEE Trans. Circuits, I 46, 463–480 (1999) zbMATHCrossRefGoogle Scholar
  15. 15.
    Wang, S., Sun, X.: Generalization of hinging hyperplanes. IEEE Trans. Inf. Theory 12, 4425–4431 (2005) CrossRefGoogle Scholar
  16. 16.
    Wang, S., Huang, X., Junaid, K.M.: Configuration of continuous piecewise-linear neural networks. IEEE Trans. Neural Netw. 19, 1431–1445 (2008) CrossRefGoogle Scholar
  17. 17.
    Xu, J., Huang, X., Wang, S.: Adaptive hinging hyperplanes and its applications in dynamic system identification. Automatica 45, 2325–2332 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Tarela, J.M., Martinez, M.V.: Region configurations for realizability of lattice piecewise-linear models. Math. Comput. Model. 30, 17–27 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Croxton, K.L., Gendron, B., Magnanti, T.L.: A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manag. Sci. 49, 1268–1273 (2003) zbMATHCrossRefGoogle Scholar
  20. 20.
    Keha, A.B., de Farias, I.R., Nemhauser, G.L.: A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization. Oper. Res. 54, 847–858 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Beale, E.M.L., Tomlin, J.A.: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. In: Proceedings of the Fifth International Conference on Operational Research, pp. 447–454 (1970) Google Scholar
  22. 22.
    Misener, R., Floudas, C.A.: Piecewise-linear approximations of multidimensional functions. J. Optim. Theory Appl. 145, 120–147 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Toriello, A., Vielma, J.P.: Fitting piecewise linear continuous functions. Report of Georigia Institue of Technology (2010) Google Scholar
  24. 24.
    Ernst, S.: Hinging hyperplane trees for approximation and identification. In: Proceedings of the 37th IEEE Conference on Decision and Control, pp. 1266–1271 (1998) Google Scholar
  25. 25.
    Pucar, P., Sjöberg, J.: On the hinge-finding algorithm for hingeing hyperplanes. IEEE Trans. Inf. Theory 44, 1310–1319 (1998) zbMATHCrossRefGoogle Scholar
  26. 26.
    Karniel, A., Meir, R., Inbar, G.F.: Polyhedral mixture of linear experts for many-to-one mapping inversion and multiple controllers. Neurocomputing 37, 31–49 (2001) zbMATHCrossRefGoogle Scholar
  27. 27.
    Özkan, L., Kothare, M.V., Georgakis, C.: Control of a solution copolymerization reactor using multi-model predictive control. Chem. Eng. Sci. 58, 1207–1221 (2003) CrossRefGoogle Scholar
  28. 28.
    Ramírez, D.R., Camacho, E.F., Arahal, M.R.: Implementation of min-max MPC using hinging hyperplanes: application to a heat exchanger. Control Eng. Pract. 12, 1197–1205 (2004) CrossRefGoogle Scholar
  29. 29.
    Zanma, T., Fuke, K., Ma, S.C., Ishida, M.: Simultaneous identification of piecewise affine systems and number of subsystems using mixed logical dynamical systems theory. Electron. Commun. Jpn. 91, 1–10 (2008) Google Scholar
  30. 30.
    Julián, P., Desages, A., D’Amico, B.: Orthonormal high-level canonical PWL functions with applications to model reduction. IEEE Trans. Circuits, I 47, 702–712 (2000) CrossRefGoogle Scholar
  31. 31.
    Cervantes, A.L., Agamennoni, O.E., Figueroa, J.L.: A nonlinear model predictive control system based on wiener piecewise linear models. J. Process Control 13, 655–666 (2003) CrossRefGoogle Scholar
  32. 32.
    Castro, L.R., Figueroa, J.L., Agamennoni, O.E.: An NIIR structure using HL-CPWL functions. Lat. Am. Appl. Res. 35, 161–166 (2005) Google Scholar
  33. 33.
    Shafiee, G., Arefi, M.M., Jahed-Motlagh, M.R., Jalali, A.A.: Nonlinear predictive control of a polymerization reactor based on piecewise linear wiener model. Chem. Eng. J. 143, 282–292 (2008) CrossRefGoogle Scholar
  34. 34.
    Wen, C., Wang, S., Jin, X., Ma, X.: Identification of dynamic systems using piecewise-affine basis function models. Automatica 43, 1824–1831 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Chikkula, Y., Lee, J.H., Ogunnaike, B.A.: Dynamically scheduled MPC of nonlinear processes using hinging hyperplane models. AIChE J. 44, 2658–2674 (1998) CrossRefGoogle Scholar
  36. 36.
    Xu, J., Huang, X., Wang, S.: Nonlinear model predictive control using adaptive hinging hyperplanes model. In: Proceedings of the 48th IEEE Conference on Decision and Control, pp. 2598–2603 (2009) Google Scholar
  37. 37.
    Huang, X., Xu, J., Wang, S.: Operation optimization for centrifugal chiller plants using continuous piecewise linear programming. In: Proceedings of 2010 IEEE International Conference on Systems Man and Cybernetics, pp. 1121–1126 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of AutomationTsinghua UniversityBeijingP.R. China

Personalised recommendations