Skip to main content
Log in

Strong Convergence Theorems for Nonexpansive Mappings and Ky Fan Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript


We introduce a new iteration method and prove strong convergence theorems for finding a common element of the set of fixed points of a nonexpansive mapping and the solution set of monotone and Lipschitz-type continuous Ky Fan inequality. Under certain conditions on parameters, we show that the iteration sequences generated by this method converge strongly to the common element in a real Hilbert space. Some preliminary computational experiences are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequality III, pp. 103–113. Academic Press, New York (1972)

    Google Scholar 

  2. Anh, P.N.: An LQP regularization method for equilibrium problems on polyhedral. Vietnam J. Math. 36, 209–228 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Blum, E., Oettli, W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127–149 (1994)

    MathSciNet  Google Scholar 

  4. Bre’zis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan’s minimax principle. Boll. Unione Mat. Ital., VI, 129–132 (1972)

    MathSciNet  Google Scholar 

  5. Giannessi, F., Maugeri, A.: Variational Inequalities and Network Equilibrium Problems. Springer, Berlin (1995)

    MATH  Google Scholar 

  6. Giannessi, F., Maugeri, A., Pardalos, P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer, Dordrecht (2004)

    Book  Google Scholar 

  7. Korpelevich, G.M.: Extragradient method for finding saddle points and other problems. Èkon. Mat. Metody 12, 747–756 (1976)

    MATH  Google Scholar 

  8. Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Equilibrium Problems and Variational Models. Kluwer, Dordrecht (2003)

    Google Scholar 

  9. Quoc, T.D., Anh, P.N., Muu, L.D.: Dual extragradient algorithms to equilibrium problems. J. Glob. Optim. 52, 139–159 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Martinet, B.: Régularisation d’inéquations variationelles par approximations successives. Rev. Fr. Autom. Inform. Rech. Opér., Anal. Numér. 4, 154–159 (1970)

    MathSciNet  Google Scholar 

  11. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2000)

    Google Scholar 

  13. Anh, P.N.: A logarithmic quadratic regularization method for solving pseudomonotone equilibrium problems. Acta Math. Vietnam. 34, 183–200 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Anh, P.N., Kim, J.K.: Outer approximation algorithms for pseudomonotone equilibrium problems. Comput. Appl. Math. 61, 2588–2595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ceng, L.C., Hadjisavvas, N., Wong, N.C.: Strong convergence theorem by hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim., 46, 635–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, J., Zhang, L.J., Fan, T.G.: Viscosity approximation methods for nonexpansive mappings and monotone mappings. J. Math. Anal. Appl. 334, 1450–1461 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Anh, P.N., Son, D.X.: A new iterative scheme for pseudomonotone equilibrium problems and a finite family of pseudocontractions. J. Appl. Math. Inform. 29, 1179–1191 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MATH  Google Scholar 

  19. Xu, H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ceng, L.C., Schaible, S., Yao, J.C.: Implicit iteration scheme with perturbed mapping for equilibrium problems and fixed point problems of finitely many nonexpansive mappings. J. Optim. Theory Appl. 139, 403–418 (2008)

    Article  MathSciNet  Google Scholar 

  22. Kim, J.K., Anh, P.N., Nam, J.M.: Strong convergence of an extragradient method for equilibrium problems and fixed point problems. J. Korean Math. Soc. 49, 187–200 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tada, A., Takahashi, W.: Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem. J. Optim. Theory Appl. 133, 359–370 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yao, Y., Liou, Y.C., Wu, Y.J.: An extragradient method for mixed equilibrium problems and fixed point problems. Fixed Point Theory Appl. (2009). doi:10.1155/2009/632819. Article ID 632819, 15 pages

    MathSciNet  Google Scholar 

  25. Anh, P.N.: A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optimization 1–13 (2011)

  26. Suzuki, T.: Strong convergence of Krasnoselskii and Mann type sequences for one-parameter nonexpansive semi-groups without Bochner integrals. J. Math. Anal. Appl. 305, 227–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Goebel, K., Kirk, W.A.: Topics on Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

Download references


This work was supported by National Foundation for Science and Technology Development of Vietnam (NAFOSTED).

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. N. Anh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anh, P.N. Strong Convergence Theorems for Nonexpansive Mappings and Ky Fan Inequalities. J Optim Theory Appl 154, 303–320 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: