Skip to main content
Log in

Entropic Value-at-Risk: A New Coherent Risk Measure

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper introduces the concept of entropic value-at-risk (EVaR), a new coherent risk measure that corresponds to the tightest possible upper bound obtained from the Chernoff inequality for the value-at-risk (VaR) as well as the conditional value-at-risk (CVaR). We show that a broad class of stochastic optimization problems that are computationally intractable with the CVaR is efficiently solvable when the EVaR is incorporated. We also prove that if two distributions have the same EVaR at all confidence levels, then they are identical at all points. The dual representation of the EVaR is closely related to the Kullback-Leibler divergence, also known as the relative entropy. Inspired by this dual representation, we define a large class of coherent risk measures, called g-entropic risk measures. The new class includes both the CVaR and the EVaR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi-Javid, A.: Stochastic optimization via entropic value-at-risk: A new coherent risk measure. In: International Conference on Operations Research and Optimization, January 2011, Tehran, Iran (2011)

    Google Scholar 

  2. Ahmadi-Javid, A.: An information–theoretic approach to constructing coherent risk measures. In: Proceedings of IEEE International Symposium on Information Theory, August 2011, St. Petersburg, Russia, pp. 2125–2127 (2011)

    Chapter  Google Scholar 

  3. Artzner, Ph., Delbaen, F., Eber, J.M., Heath, D.: Thinking coherently. Risk 10, 68–71 (1997)

    Google Scholar 

  4. Artzner, Ph., Delbaen, F., Eber, J.M., Heath, D.: Coherent risk measures. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schonbucher, P.J. (eds.) Advances in Finance and Stochastic, Essays in Honor of Dieter Sondermann, pp. 1–38. Springer, Berlin (2002)

    Google Scholar 

  6. Föllmer, H., Schied, A.: Convex risk measures and trading constraints. Finance Stoch. 6, 429–447 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Bank. Finance 26, 1473–1486 (2002)

    Article  Google Scholar 

  8. Ruszczynski, A., Shapiro, A.: Optimization of convex risk functions. Math. Oper. Res. 31, 433–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kaina, M., Ruschendorf, L.: On convex risk measures on L p-spaces. Math. Methods Oper. Res. 69, 475–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pflug, G.Ch.: Subdifferential representations of risk measures. Math. Program. 108, 339–354 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schied, A.: Risk measures and robust optimization problems. Stoch. Models 22, 753–831 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Balbas, A.: Mathematical methods in modern risk measurement: A survey. RACSAM Ser. Appl. Math. 101, 205–219 (2007)

    MathSciNet  MATH  Google Scholar 

  13. El Karoui, N., Ravanelli, C.: Cash sub-additive risk measures under interest rate ambiguity. Math. Finance 19, 561–590 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Risk measures: rationality and diversification. Math. Finance 21, 743–774 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Balbas, A., Balbas, R.: Compatibility between pricing rules and risk measures: The CCVaR. RACSAM Ser. Appl. Math. 103, 251–264 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cont, R., Deguest, R., Scandolo, G.: Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance 10, 593–606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Acciaio, B., Penner, I.: Dynamic risk measures. In: Di Nunno, G., Oksendal, B. (eds.) Advanced Mathematical Methods for Finance, pp. 1–34. Springer, Berlin (2011)

    Chapter  Google Scholar 

  18. Goovaerts, M.J., De Vijlder, F., Haezendonck, J.: Insurance Premiums. North-Holland, Amsterdam (1984)

    Google Scholar 

  19. Kaas, R., Goovaerts, M.J., Dhaene, J., Denuit, M.: Modern Actuarial Risk Theory. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  20. Wang, S.S., Young, V.R., Panjer, H.H.: Axiomatic characterization of insurance prices. Insur. Math. Econ. 21, 173–183 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Panjer, H.H.: Measurement of risk, solvency requirements and allocation of capital within financial conglomerates. Institute of Insurance and Pension Research, Research Report 1-15, University of Waterloo (2002)

  22. Goovaerts, M.J., Kaas, R., Laeven, R.J.A., Tang, Q.: A comonotonic image of independence for additive risk measures. Insur. Math. Econ. 35, 581–594 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Denuit, M., Dhaene, J., Goovaerts, M.J., Kaas, R., Laeven, R.J.A.: Risk measurement with equivalent utility principles. In: Ruschendorf, L. (ed.) Risk Measures: General Aspects and Applications (special issue). Statistics and Decisions, vol. 24, pp. 1–26 (2006)

    Google Scholar 

  24. Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Generalized deviations in risk analysis. Finance Stoch. 10, 51–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Optimality conditions in portfolio analysis with generalized deviation measures. Math. Program. 108, 515–540 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ahmed, S.: Convexity and decomposition of mean-risk stochastic programs. Math. Program. 106, 447–452 (2006)

    Article  MathSciNet  Google Scholar 

  27. Eichhorn, A., Romisch, W.: Polyhedral risk measures in stochastic programming. SIAM J. Optim. 16, 69–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Miller, N., Ruszczyński, A.: Risk-averse two-stage stochastic linear programming: Modeling and decomposition. Oper. Res. 59, 125–132 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Krokhmal, P., Zabarankin, M., Uryasev, S.: Modeling and optimization of risk. Surv. Oper. Res. Manag. Sci. 16, 49–66 (2011)

    Article  Google Scholar 

  30. Markowitz, H.: Portfolio Selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  31. Pritsker, M.: Evaluating value at risk methodologies. J. Financ. Serv. Res. 12, 201–242 (1997)

    Article  Google Scholar 

  32. Guldimann, T.: The story of risk metrics. Risk 13, 56–58 (2000)

    Google Scholar 

  33. Holton, G.: Value-at-Risk: Theory and Practice. Academic Press, San Diego (2002)

    Google Scholar 

  34. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)

    Google Scholar 

  35. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26, 1443–1471 (2002)

    Article  Google Scholar 

  36. Acerbi, C.: Spectral risk measures: A coherent representation of subjective risk aversion. J. Bank. Finance 26, 1505–1518 (2002)

    Article  Google Scholar 

  37. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on a sum of observations. Ann. Stat. 23, 493–507 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gerber, H.U.: On additive premium calculation principles. ASTIN Bull. 7, 215–222 (1974)

    Google Scholar 

  39. Follmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time. de Gruyter, Berlin (2004)

    Book  Google Scholar 

  40. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  41. Shapiro, A., Nemirovski, A.: On complexity of stochastic programming problems. In: Jeyakumar, V., Rubinov, A.M. (eds.) Continuous Optimization: Current Trends and Applications, pp. 111–144. Springer, New York (2005)

    Google Scholar 

  42. Ali, S.M., Silvey, S.D.: A general class of coefficients of divergence of one distribution from another. J. R. Stat. Soc. B 28, 131–142 (1966)

    MathSciNet  MATH  Google Scholar 

  43. Csiszar, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hung. 2, 299–318 (1967)

    MathSciNet  MATH  Google Scholar 

  44. Liese, F., Vajda, I.: Convex Statistical Distances. Teubner, Leipzig (1987)

    MATH  Google Scholar 

  45. Ullah, A.: Entropy, divergence and distance measures with econometric applications. J. Stat. Plan. Inference 49, 137–162 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ben-Tal, A., Teboulle, M.: An old-new concept of convex risk measures: the optimized certainty equivalent. Math. Finance 17, 449–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahmadi-Javid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi-Javid, A. Entropic Value-at-Risk: A New Coherent Risk Measure. J Optim Theory Appl 155, 1105–1123 (2012). https://doi.org/10.1007/s10957-011-9968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9968-2

Keywords

Navigation