Hull-Volume with Applications to Convergence Analysis



We introduce and study decompositions of finite sets as well as coverings of their convex hulls, and use these objects to develop various estimates of and formulas for the “hull-volume” of the sets (i.e., the volume of their convex hull). We apply our results to the convergence analysis of the “iterate-sets” associated with each iteration of a reduce-or-retreat optimization method (including pattern-search methods like Nelder–Mead as well as model-based methods).


Polytope Convex hull Simplex Volume Numerical optimization Convergence analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levy, A.B.: Descent and convergence in reduce-or-retreat optimization methods. Preprint (2011) Google Scholar
  2. 2.
    McKinnon, K.I.M.: Convergence of the Nelder–Mead simplex method to a nonstationary point. SIAM J. Optim. 9, 148–158 (1998) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Grünbaum, B.: Convex Polytopes. Wiley, New York (1967) MATHGoogle Scholar
  4. 4.
    Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995) MATHCrossRefGoogle Scholar
  5. 5.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) MATHGoogle Scholar
  6. 6.
    Thomas, R.: Lectures in Geometric Combinatorics. The American Mathematical Society, Providence (2006) MATHGoogle Scholar
  7. 7.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Martini, H.: A new view on some characterizations of simplices. Arch. Math. 55, 389–393 (1990) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lee, C.W.: Regular Triangulations of Convex Polytopes. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 443–456. Am. Math. Soc., Providence (1991) Google Scholar
  10. 10.
    Lawrence, J.: Polytope volume computation. Math. Comput. 57, 259–271 (1991) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Allgower, E.L., Schmidt, P.H.: Computing volumes of polyhedra. Math. Comput. 46, 171–174 (1986) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Lasserre, J.B.: An analytical expression and an algorithm for the volume of a convex polyhedron in ℝn. J. Optim. Theory Appl. 39, 363–377 (1983) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Cohen, J., Hickey, T.: Two algorithms for determining volumes of convex polyhedra. J. Assoc. Comput. Mach. 26, 401–414 (1979) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    von Hohenbalken, B.: Finding simplicial subdivisions of polytopes. Math. Program. 21, 233–234 (1981) MATHCrossRefGoogle Scholar
  15. 15.
    Scheinberg, K., Toint, Ph.L.: Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization. SIAM J. Optim. 20, 3512–3532 (2010) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsBowdoin CollegeBrunswickUSA

Personalised recommendations