Skip to main content
Log in

Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new concept of ϵ-efficiency for vector optimization problems. This extends and unifies various notions of approximate solutions in the literature. Some properties for this new class of approximate solutions are established, and several existence results, as well as nonlinear scalarizations, are obtained by means of the Ekeland’s variational principle. Moreover, under the assumption of generalized subconvex functions, we derive the linear scalarization and the Lagrange multiplier rule for approximate solutions based on the scalarization in Asplund spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kutateladze, S.S.: Convex ϵ-programming. Sov. Math. Dokl. 20, 390–393 (1979)

    Google Scholar 

  2. Ciligot-Travain, M.: On Lagrange Kuhn-Tucker multipliers for Pareto optimization problems. Numer. Funct. Anal. Optim. 15, 689–693 (1994)

    Article  MathSciNet  Google Scholar 

  3. Amahroq, T., Taa, A.: On Lagrange Kuhn-Tucker multipliers for multiobjective optimization problems. Optimization 41, 159–172 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dutta, J., Veterivel, V.: On approximate minima in vector optimization. Numer. Funct. Anal. Optim. 22, 845–859 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bolintineanu, S.: Vector variational principles: ϵ-efficiency and scalar stationarity. J. Convex Anal. 8, 71–85 (2001)

    MATH  MathSciNet  Google Scholar 

  6. White, D.J.: Epsilon efficiency. J. Optim. Theory Appl. 49, 319–337 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Helbig, S.: One new concept for ϵ-efficiency. Talk at “Optimization Days 1992”, Montreal (1992)

  8. Tanaka, T.: A new approach to approximation of solutions in vector optimization problems. In: Fushimi, M., Tone, K. (eds.) Proceedings of APORS, pp. 497–504. World Scientific, Singapore (1995)

    Google Scholar 

  9. Gutiérrez, C., Jiménez, B., Novo, V.: A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim. 17, 688–710 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gutiérrez, C., Jiménez, B., Novo, V.: On approximate efficiency in multiobjective programming. Math. Methods Oper. Res. 64, 165–185 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Loridan, P.: Necessary conditions of ϵ-optimality. Math. Program. Stud. 19, 140–152 (1982)

    MathSciNet  Google Scholar 

  12. Loridan, P.: ϵ-solutions in vector optimization problems. J. Optim. Theory Appl. 43, 265–276 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Beldiman, M., Panaitescu, E., Dogaru, L.: Approximate quasi efficient solutions in multiobjective optimization. Bull. Math. Soc. Sci. Math. Roum. 99, 109–121 (2008)

    MathSciNet  Google Scholar 

  14. Gutiérrez, C., Lopéz, R., Novo, V.: Generalized ϵ-quasi-solutions in multiobjective optimization problems: existence results and optimality conditions. Nonlinear Anal. 72, 4331–4346 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gutiérrez, C., Jiménez, B., Novo, V.: A set-valued Ekeland’s variational principle in vector optimization. SIAM J. Control Optim. 47, 883–903 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Qiu, J.H.: Ekeland’s variational principle in locally convex spaces and the density of extremal points. J. Math. Anal. Appl. 360, 317–327 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Qiu, J.H.: A generalized Ekeland vector variational principle and its applications in optimization. Nonlinear Anal. 71, 4705–4717 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen, G.Y., Huang, X.X., Hou, S.H.: General Ekeland’s variational principle for set-valued mappings. J. Optim. Theory Appl. 106, 151–164 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Durea, M., Dutta, J., Tammer, C.: Lagrange multipliers for ϵ-Pareto solutions in vector optimization with nonsolid cones in Banach spaces. J. Optim. Theory Appl. 145, 196–211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hamel, A.: An ϵ-Lagrange multiplier rule for a mathematical programming problem on Banach spaces. Optimization 49, 137–149 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huang, X.X.: Optimality conditions and approximate optimality conditions in locally Lipschitz vector optimization. Optimization 51, 309–321 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gutiérrez, C., Jiménez, B., Novo, V.: Multiplier rules and saddle-point theorems for Helbig’s approximate solutions in convex Pareto problems. J. Glob. Optim. 32, 367–383 (2005)

    Article  MATH  Google Scholar 

  23. Gupta, D., Mehra, A.: Two types of approximate saddle points. Numer. Funct. Anal. Optim. 29, 532–550 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Bazán, F.F., Jiménez, B.: Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48, 881–908 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gopfert, A., Riahi, H., Tammer, C., Zalinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

    Google Scholar 

  26. Hiriart-Urruty, J.B.: New concepts in nondifferentiable programming. Bull. Soc. Math. Fr., Mém. 60, 57–85 (1979)

    MathSciNet  Google Scholar 

  27. Hiriart-Urruty, J.B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42, 1071–1086 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yang, X.M., Li, D., Wang, S.Y.: Near-subconvexlikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110, 413–427 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Applications, vol. 2. Grundlehren der Mathematischen Wissenschaften (Comprehensive Studies in Mathematics). Springer, Berlin (2006)

    Google Scholar 

  31. Dureaa, M., Tammer, C.: Fuzzy necessary optimality conditions for vector optimization problems. Optimization 58, 449–467 (2009)

    Article  MathSciNet  Google Scholar 

  32. Tammer, C., Zalinescu, C.: Lipschitz properties of the scalarization function and application. Optimization 59, 305–319 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. M. Yang.

Additional information

Communicated by Guang-ya Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Hou, S.H. & Yang, X.M. Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems. J Optim Theory Appl 152, 97–120 (2012). https://doi.org/10.1007/s10957-011-9891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9891-6

Keywords

Navigation