Skip to main content
Log in

Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper considers deterministic global optimization of scenario-based, two-stage stochastic mixed-integer nonlinear programs (MINLPs) in which the participating functions are nonconvex and separable in integer and continuous variables. A novel decomposition method based on generalized Benders decomposition, named nonconvex generalized Benders decomposition (NGBD), is developed to obtain ε-optimal solutions of the stochastic MINLPs of interest in finite time. The dramatic computational advantage of NGBD over state-of-the-art global optimizers is demonstrated through the computational study of several engineering problems, where a problem with almost 150,000 variables is solved by NGBD within 80 minutes of solver time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3, 227–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, London (1995)

    MATH  Google Scholar 

  3. Biegler, L.T., Grossmann, I.E.: Retrospective on optimization. Comput. Chem. Eng. 28, 1169–1192 (2004)

    Google Scholar 

  4. Sahinidis, N.V.: Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28, 971–983 (2004)

    Article  Google Scholar 

  5. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  6. Li, X., Armagan, E., Tomasgard, A., Barton, P.I.: Stochastic pooling problem for natural gas production network design and operation under uncertainty. AIChE J. (2010). doi:10.1002/aic.12419

    Google Scholar 

  7. Tarhan, B., Grossmann, I.E., Goel, V.: Stochastic programming approach for the planning of offshore oil or gas field infrastructure under decision-dependent uncertainty. Ind. Eng. Chem. Res. 48, 3078–3097 (2009)

    Article  Google Scholar 

  8. Karuppiah, R., Grossmann, I.E.: Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Comput. Chem. Eng. 32, 145–160 (2008)

    Article  Google Scholar 

  9. Rebennack, S., Kallrath, J., Pardalos, P.M.: Optimal storage design for a multi-product plant: a non-convex MINLP formulation. Comput. Chem. Eng. 35, 255–271 (2011)

    Article  Google Scholar 

  10. Acevedo, J., Pistikopoulos, E.N.: Stochastic optimization based algorithms for process synthesis under uncertainty. Comput. Chem. Eng. 22, 647–671 (1998)

    Article  Google Scholar 

  11. Ahmed, S., King, A.J., Parija, G.: A multi-stage stochastic integer programming approach for capacity expansion under uncertainty. J. Glob. Optim. 26, 3–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  13. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24, 37–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming problems. Manag. Sci. 27, 1–18 (1981)

    Article  MATH  Google Scholar 

  18. Fisher, M.L.: An applications oriented guide to Lagrangian relaxation. Interfaces 15(2), 10–21 (1985)

    Article  Google Scholar 

  19. Karuppiah, R., Grossmann, I.E.: A Lagrangian based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures. J. Glob. Optim. 41, 163–186 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khajavirad, A., Michalek, J.J.: A deterministic Lagrangian-based global optimization approach for quasiseparable nonconvex mixed-integer nonlinear programs. J. Mech. Des. 131(5), 051009 (2009)

    Article  Google Scholar 

  21. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of mixed-integer nonlinear problems. AIChE J. 46(9), 1769–1797 (2000)

    Article  Google Scholar 

  23. Kesavan, P., Allgor, R.J., Gatzke, E.P., Barton, P.I.: Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs. Math. Program., Ser. A 100, 517–535 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Duran, M., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed nonlinear programs. Math. Program. 66, 327–349 (1986)

    MathSciNet  Google Scholar 

  25. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66, 327–349 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Geoffrion, A.M.: Elements of large-scale mathematical programming: part I: concepts. Manag. Sci. 16(11), 652–675 (1970)

    Article  MathSciNet  Google Scholar 

  27. Geoffrion, A.M.: Elements of large-scale mathematical programming: part II: synthesis of algorithms and bibliography. Manag. Sci. 16(11), 652–675 (1970)

    Article  MathSciNet  Google Scholar 

  28. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, α-BB, for general twice-differentiable constrained NLPs—I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  30. Gatzke, E.P., Tolsma, J.E., Barton, P.I.: Construction of convex relaxations using automated code generation technique. Optim. Eng. 3, 305–326 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  32. Sahinidis, N.V., Tawarmalani, M.: BARON 9.0.4: Global Optimization of Mixed-Integer Nonlinear Programs. User’s Manual (2010)

  33. ARKI Consulting and Development: http://www.gams.com/docs/conopt3.pdf (2011)

  34. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. IBM. IBM ILOG CPLEX: High-performance mathematical programming engine. http://www-01.ibm.com/software/integration/optimization/cplex/ (2011)

  36. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable forms. Math. Program. 76, 393–410 (1997)

    Article  MATH  Google Scholar 

  37. Balas, E., Jeroslow, R.: Canonical cuts on the unit hypercube. SIAM J. Appl. Math. 23(1), 61–69 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Cambridge (1999)

    MATH  Google Scholar 

  39. Geoffrion, A.M.: Duality in nonlinear programming: a simplified applications-oriented development. SIAM Rev. 13(1), 1–37 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. Wiley, New York (1993)

    MATH  Google Scholar 

  41. GAMS: General Algebraic and Modeling System. Available at http://www.gams.com/ (2011)

  42. LindoSystems, Inc.: LINDOGlobal User’s Manual. http://www.gams.com/dd/docs/solvers/lindoglobal.pdf (2011)

  43. Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Berman, O., Ashrafi, N.: Optimization models for reliability of modular software systems. IEEE Trans. Softw. Eng. 19(11), 1119–1123 (1993)

    Article  Google Scholar 

  45. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems for Local and Global Optimization. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  46. Westerlund, T., Pettersson, F., Grossmann, I.E.: Optimization of pump configurations as a MINLP problem. Comput. Chem. Eng. 18(9), 845–858 (1994)

    Article  Google Scholar 

  47. Selot, A., Kuok, L.K., Robinson, M., Mason, T.L., Barton, P.I.: A short-term operational planning model for natural gas production systems. AIChE J. 54(2), 495–515 (2008)

    Article  Google Scholar 

  48. Selot, A.: Short-term supply chain management in upstream natural gas systems. PhD thesis, Massachusetts Institute of Technology (2009)

  49. Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper. Res. 33(5), 989–1007 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul I. Barton.

Additional information

Communicated by Panos M. Pardalos.

This work was supported by Statoil and the research council of Norway (project nr 176089/S60) as part of the paired Ph.D. research program in gas technologies between MIT and NTNU.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 565 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Tomasgard, A. & Barton, P.I. Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs. J Optim Theory Appl 151, 425–454 (2011). https://doi.org/10.1007/s10957-011-9888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9888-1

Keywords

Navigation