Skip to main content
Log in

A Variance-Expected Compliance Model for Structural Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The goal of this paper is to find robust structures for a given main load and its perturbations. In the first part, we show the mathematical formulation of an original variance-expected compliance model used for structural optimization. In the second part, we study the interest of this model on two 3D benchmark test cases and compare the obtained results with those given by an expected compliance model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dorn, W., Gomory, R., Greenberg, M.: Automatic design of optimal structures. J. Mech. 3, 25–52 (1964)

    Google Scholar 

  2. Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7(4), 991–1016 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Achtziger, W., Bendsøe, M., Ben-Tal, A., Zowe, J.: Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput. Sci. Eng. 4(4), 315–345 (1992)

    Article  MATH  Google Scholar 

  4. Achtziger, W.: Topology optimization of discrete structures: an introduction in view of computational and nonsmooth aspects. In: Rozvany, G.I.N. (ed.) Topology Optimization in Structural Mechanics, pp. 57–100. Springer, Vienna (1997)

    Google Scholar 

  5. Achtziger, W.: Multiple-load truss topology and sizing optimization: some properties of minimax compliance. J. Optim. Theory Appl. 98(2), 255–280 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alvarez, F., Carrasco, M.: Minimization of the expected compliance as an alternative approach to multiload truss optimization. Struct. Multidiscip. Optim. 29(6), 470–476 (2005)

    Article  MathSciNet  Google Scholar 

  7. Ben-Tal, A., Bendsøe, M.P.: A new method for optimal truss topology design. SIAM J. Optim. 3(2), 322–358 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ben-Tal, A., Zibulevsky, M.: Penalty/barrier multiplier methods for convex programming problems. SIAM J. Optim. 7(2), 347–366 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jarre, F., Kočvara, M., Zowe, J.: Optimal truss design by interior-point methods. SIAM J. Optim. 8(4), 1084–1107 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ivorra, B., Ramos, A.M., Mohammadi, B.: Semideterministic global optimization method: Application to a control problem of the burgers equation. J. Optim. Theory Appl. 135(3), 549–561 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bendsøe, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer, Berlin (2003)

    Google Scholar 

  12. Eckhardt, H.: Kinematic Design of Machines and Mechanisms. McGraw-Hill, New York (1998)

    Google Scholar 

  13. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997)

    Google Scholar 

  14. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhang, Y.: Solving large-scale linear programs by interior-point methods under the MATLAB environment. Technical Report TR96-01, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD, July 1995

  16. Ivorra, B., Mohammadi, B., Ramos, A.M.: Optimization strategies in credit portfolio management. J. Glob. Optim. 43(2), 415–427 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Seber, G.A.F.: Linear Regression Analysis. Wiley, New York (1977)

    MATH  Google Scholar 

  18. Kanno, Y., Ohsaki, M., Murota, K., Katoh, N.: Group symmetry in interior-point methods for semidefinite program. Optim. Eng. 2, 293–320 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bai, Y., de Klerk, E., Pasechnik, D., Sotirov, R.: Exploiting group symmetry in truss topology optimization. Optim. Eng. 10(3), 331–349 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ohsaki, M.: Optimization of geometrically non-linear symmetric systems with coincident critical points. Int. J. Numer. Methods Eng. 48, 1345–1357 (2000)

    Article  MATH  Google Scholar 

  21. Carrasco, M.: Diseño óptimo de estructuras reticulares en elasticidad lineal vía teoría de la dualidad. Estudio teórico y numérico. Engineering Degree Thesis, Universidad de Chile (2003)

  22. Debiane, L., Ivorra, B., Mohammadi, B., Nicoud, F., Ern, A., Poinsot, T., Pitsch, H.: A low-complexity global optimization algorithm for temperature and pollution control in flames with complex chemistry. Int. J. Comput. Fluid Dyn., 20(2), 93–98 (2006)

    Article  MATH  Google Scholar 

  23. Isebe, D., Azerad, P., Bouchette, F., Ivorra, B., Mohammadi, B.: Shape optimization of geotextile tubes for sandy beach protection. Int. J. Numer. Methods Eng. 74(8), 1262–1277 (2008)

    Article  MATH  Google Scholar 

  24. Ivorra, B., Mohammadi, B., Dumas, L., Durand, O., Redont, P.: Semi-deterministic vs. Genetic Algorithms for Global Optimization of Multichannel Optical Filters. Int. J. Comput. Eng. Sci. 2(3), 170–178 (2006)

    Article  Google Scholar 

  25. Ivorra, B., Mohammadi, B., Santiago, D.E., Hertzog, J.G.: Semi-deterministic and genetic algorithms for global optimization of microfluidic protein folding devices. Int. J. Numer. Methods Eng. 66(2), 319–333 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Artzner, P., Delbaen, D., Eber, J.M., Heath, D.: Thinking coherently. Risk 10, 68–71 (1997)

    Google Scholar 

  27. Artzner, P., Delbaen, D., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)

    MATH  Google Scholar 

  29. Carrasco, M., Ivorra, B., Lecaros, R., Ramos, A.M.: A variance-expected compliance approach for topology optimization. In: Hélder, R., Herskovits, J. (eds.) CD-ROM Proceedings of the ENGOPT 2010 Conference. Instituto Superior Técnico, Lisboa (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Ivorra.

Additional information

Communicated by Roland Glowinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrasco, M., Ivorra, B. & Ramos, A.M. A Variance-Expected Compliance Model for Structural Optimization. J Optim Theory Appl 152, 136–151 (2012). https://doi.org/10.1007/s10957-011-9874-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9874-7

Keywords

Navigation