Skip to main content
Log in

Subgame Consistent Cooperative Solution of Dynamic Games with Random Horizon

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In cooperative dynamic games, a stringent condition—that of subgame consistency—is required for a dynamically stable cooperative solution. In particular, under a subgame-consistent cooperative solution an extension of the solution policy to a subgame starting at a later time with a state brought about by prior optimal behavior will remain optimal. This paper extends subgame-consistent solutions to dynamic (discrete-time) cooperative games with random horizon. In the analysis, new forms of the Bellman equation and the Isaacs–Bellman equation in discrete-time are derived. Subgame-consistent cooperative solutions are obtained for this class of dynamic games. Analytically tractable payoff distribution mechanisms, which lead to the realization of these solutions, are developed. This is the first time that subgame-consistent solutions for cooperative dynamic games with random horizon are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeung, D.W.K., Petrosyan, L.A.: Subgame consistent cooperative solutions in stochastic differential games. J. Optim. Theory Appl. 120, 651–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yeung, D.W.K., Petrosyan, L.A.: Cooperative Stochastic Differential Games. Springer, New York (2006)

    MATH  Google Scholar 

  3. Petrosyan, L.A., Yeung, D.W.K.: Subgame-consistent cooperative solutions in randomly-furcating stochastic differential games. Int. J. Math. Comput. Model. 45, 1294–1307 (2007) (Special Issue on Lyapunov’s Methods in Stability and Control)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yeung, D.W.K.: Dynamically Consistent cooperative solution in a differential game of transboundary industrial pollution. J. Optim. Theory Appl. 134, 143–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yeung, D.W.K., Petrosyan, L.A.: A Cooperative stochastic differential game of transboundary industrial pollution. Automatica 44(6), 1532–1544 (2008)

    Article  MathSciNet  Google Scholar 

  6. Başar, T., Ho, Y.C.: Informational properties of the Nash solutions of two stochastic nonzero-sum games. J. Econ. Theory 7(4), 370–387 (1974)

    Article  Google Scholar 

  7. Başar, T.: Decentralized multicriteria optimization of linear stochastic systems. IEEE Trans. Autom. Control AC-23(2), 233–243 (1978)

    Google Scholar 

  8. Krawczyk, J.B., Tidball, M.: A discrete-time dynamic game of seasonal water allocation. J. Optim. Theory Appl. 128(2), 411–429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nie, P., Chen, L., Fukushima, M.: Dynamic programming approach to discrete time dynamic Feedback Stackelberg games with independent and dependent followers. Eur. J. Oper. Res. 169, 310–328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dockner, E., Nishimura, K.: Transboundary pollution in a dynamic game model. Jpn. Econ. Rev. 50(4), 443–456 (1999)

    Article  Google Scholar 

  11. Rubio, S., Ulph, A.: An infinite-horizon model of dynamic membership of international environmental agreements. J. Environ. Econ. Manag. 54(3), 296–310 (2007)

    Article  MATH  Google Scholar 

  12. Dutta, P.-K., Radner, R.: Population growth and technological change in a global warming model. Econ. Theory 29(2), 251–270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehtamo, H., Hamalainen, R.: A cooperative incentive equilibrium for a resource management. J. Econ. Dyn. Control 17(4), 659–678 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yeung, D.W.K., Petrosyan, L.A.: Subgame consistent solutions for cooperative stochastic dynamic games. J. Optim. Theory Appl. 145(3), 579–596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Petrosyan, L.A., Murzov, N.V.: Game theoretic problems in mechanics. Litov. Math. Sb. N6, 423–433 (1966)

    Google Scholar 

  16. Petrosyan, L.A., Shevkoplyas, E.V.: Cooperative solutions for games with random duration. Game Theory Appl. IX, 125–139 (2003)

    MathSciNet  Google Scholar 

  17. Shevkoplyas, E.V.: The Shapley value in cooperative differential games with random duration. Ann. Dyn. Games 11, 359–373 (2011). doi:10.1007/978-0-8176-8089-3_18

    Article  Google Scholar 

  18. Nash, J.F.Jr.: Noncooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  19. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Wiley, New York (1944)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. K. Yeung.

Additional information

Communicated by George Leitmann.

This research was supported by the EU TOCSIN Project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeung, D.W.K., Petrosyan, L.A. Subgame Consistent Cooperative Solution of Dynamic Games with Random Horizon. J Optim Theory Appl 150, 78–97 (2011). https://doi.org/10.1007/s10957-011-9824-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9824-4

Keywords

Navigation