Advertisement

Maximizing Strictly Convex Quadratic Functions with Bounded Perturbations

  • H. X. PhuEmail author
  • V. M. Pho
  • P. T. An
Article
  • 220 Downloads

Abstract

The problem of maximizing \(\tilde{f}=f+p\) over some convex subset D of the n-dimensional Euclidean space is investigated, where f is a strictly convex quadratic function and p is assumed to be bounded by some s∈[0,+∞[. The location of global maximal solutions of \(\tilde{f}\) on D is derived from the roughly generalized convexity of \(\tilde{f}\). The distance between global (or local) maximal solutions of \(\tilde{f}\) on D and global (or local, respectively) maximal solutions of f on D is estimated. As consequence, the set of global (or local) maximal solutions of \(\tilde{f}\) on D is upper (or lower, respectively) semicontinuous when the upper bound s tends to zero.

Keywords

Quadratic function Convex maximization Generalized convexity Bounded perturbation Stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phu, H.X.: Outer γ-convexity and inner γ-convexity of disturbed functions. Vietnam J. Math. 35, 107–119 (2007) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Phu, H.X.: Minimizing convex functions with bounded perturbations. SIAM J. Optim. 20, 2709–2729 (2010) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Phu, H.X., Pho, V.M.: Some properties of boundedly perturbed strictly convex quadratic functions. Optimization. doi: 10.1080/02331931003746114
  4. 4.
    Phu, H.X., Pho, V.M.: Global infimum of strictly convex quadratic functions with bounded perturbations. Math. Methods Oper. Res. 72, 327–345 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Canovas, M.J., Hantoute, A., Lopez, M., Marco, A.: Lipschitz behavior of convex semi-infinite optimization problems: a variational approach. J. Glob. Optim. 41, 1–13 (2008) zbMATHCrossRefGoogle Scholar
  6. 6.
    Klatte, D.: On the lower semicontinuity of optimal sets in convex parametric optimization. Point-to-set maps and mathematical programming. Math. Program. Stud. 10, 104–109 (1979) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Klatte, D.: Lower semicontinuity of the minimum in parametric convex programs. J. Optim. Theory Appl. 94, 511–517 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kummer, B.: Stability of generalized equations and Kuhn-Tucker points of perturbed convex programs. In: System Modelling and Optimization, Copenhagen, 1983. Lecture Notes in Control and Inform. Sci., vol. 59, pp. 213–218. Springer, Berlin (1984) Google Scholar
  9. 9.
    Schultz, R.: Estimates for Kuhn-Tucker points of perturbed convex programs. Optimization 19, 29–43 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Singer, I.: Duality theorems for perturbed convex optimization. J. Math. Anal. Appl. 81, 437–452 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Trudzik, L.I.: Perturbed convex programming in reflexive Banach spaces. Nonlinear Anal. 9, 61–78 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Zlobec, S.: Characterizing an optimal input in perturbed convex programming. Math. Program. 25, 109–121 (1983) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Daniel, J.W.: Stability of the solution of definite quadratic programs. Math. Program. 5, 41–53 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lee, G.M., Tam, N.N., Yen, N.D.: On the optimal value function of a linearly perturbed quadratic program. J. Glob. Optim. 32, 119–134 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lee, G.M., Tam, N.N., Yen, N.D.: Continuity of the solution map in quadratic programs under linear perturbations. J. Optim. Theory Appl. 129, 415–423 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Mirnia, K., Ghaffari-Hadigheh, A.: Support set expansion sensitivity analysis in convex quadratic optimization. Optim. Methods Softw. 22, 601–616 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Phu, H.X.: Some properties of solution sets to nonconvex quadratic programming problems. Optimization 56, 369–383 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Phu, H.X., Yen, N.D.: On the stability of solutions to quadratic programming problems. Math. Program. Ser. A 89, 385–394 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dinkel, J.J., Tretter, J.M.: Characterization of perturbed mathematical programs and interval analysis. Math. Program. Ser. A 61, 377–384 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Klatte, D.: Upper Lipschitz behavior of solutions to perturbed C 1,1 programs. Math. Program. Ser. B 88, 285–311 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Phu, H.X., Bock, H.G., Pickenhain, S.: Rough stability of solutions to nonconvex optimization problems. In: Dockner, E.J., Hartl, R.F., Luptačik, M., Sorger, G. (eds.) Optimization, Dynamics, and Economic Analysis, pp. 22–35. Physica-Verlag, Heidelberg (2000) Google Scholar
  22. 22.
    van den Bosch, P.P.J., Lootsma, F.A.: Scheduling of power generation via large-scale nonlinear optimization. J. Optim. Theory Appl. 55, 313–326 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Danaraj, R.M.S., Gajendran, F.: Quadratic programming solution to emission and economic dispatch problem. J. Inst. Eng., India 86, 129–132 (2005) Google Scholar
  24. 24.
    Guddat, J., Röhmisch, W., Schultz, R.: Some applications of mathematical programming techniques on optimal power dispatch. Computing 49, 193–200 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Zhu, Y., Tomsovic, K.: Optimal distribution power flow for systems with distributed energy resources. Int. J. Electr. Power Energy Syst. 29, 260–267 (2007) CrossRefGoogle Scholar
  26. 26.
    Al-Othman, A.K., Al-Sumait, J.S., Sykulski, J.K.: Application of pattern search method to power system valve-point economic dispatch. Int. J. Electr. Power Energy Syst. 29, 720–730 (2007) CrossRefGoogle Scholar
  27. 27.
    Walters, D.C., Sheble, G.B.: Genetic algorithm solution of economic dispatch with valve-point loading. IEEE Trans. Power Syst. 8, 1325–1332 (1993) CrossRefGoogle Scholar
  28. 28.
    Floudas, C.A., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 217–269. Kluwer Academic, Dordrecht (1995) Google Scholar
  29. 29.
    Rosen, J.B.: Global minimization of a linearly constrained concave function by partition of feasible domain. Math. Oper. Res. 8, 215–230 (1983) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Rosen, J.B., Pardalos, P.M.: Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Program. 34, 163–174 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Thakur, L.S.: Domain contraction in nonlinear programming: minimizing a quadratic concave objective over a polyhedron. Math. Oper. Res. 16, 390–407 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Hirsch, W.M., Dantzig, G.B.: Notes on linear programming: Part XIX, The fixed charge problem. Rand Research Memorandum No. 1383, Santa Monica, California (1954) Google Scholar
  33. 33.
    Murty, K.G.: Solving the fixed charge problem by ranking the extreme points. Oper. Res. 16, 268–279 (1968) zbMATHCrossRefGoogle Scholar
  34. 34.
    Sadagopan, S., Ravindran, A.: A vertex ranking algorithm for the fixed-charge transportation problem. J. Optim. Theory Appl. 37, 221–230 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Baumol, W., Panzar, J., Willig, D.: Contestable Markets and the Theory of Industrial Structure. Harcourt Brace Jovanovich, New York (1982) Google Scholar
  36. 36.
    Filippini, M., Lepori, B.: Cost structure, economies of capacity utilization and scope in Swiss higher education institutions. In: Bonaccorsi, A., Daraio, C. (eds.) Universities and Strategic Knowledge Creation: Specialization and Performance in Europe, pp. 272–304. Edward Elgar, Massachusetts (2007) Google Scholar
  37. 37.
    Koshal, R., Koshal, M.: Economies of scale and scope in higher education: a case of comprehensive universities. Econ. Educ. Rev. 18, 269–277 (1999) CrossRefGoogle Scholar
  38. 38.
    Mayo, J.W.: Multiproduct monopoly, regulations, and firm costs. South. Econ. J. 51, 208–218 (1984) CrossRefGoogle Scholar
  39. 39.
    Sav, G.T.: Higher education costs and scale and scope economies. Appl. Econ. 36, 607–614 (2004) CrossRefGoogle Scholar
  40. 40.
    Phu, H.X., An, P.T.: Stable generalization of convex functions. Optimization 38, 309–318 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Phu, H.X., An, P.T.: Stability of generalized convex functions with respect to linear disturbances. Optimization 46, 381–389 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Phu, H.X.: Outer Γ-convexity in vector spaces. Numer. Funct. Anal. Optim. 29, 835–854 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Phu, H.X., An, P.T.: Outer γ-convexity in normed linear spaces. Vietnam J. Math. 27, 323–334 (1999) MathSciNetzbMATHGoogle Scholar
  44. 44.
    Phu, H.X.: Supremizers of inner γ-convex functions. Math. Methods Oper. Res. 67, 207–222 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Phu, H.X.: Inner γ-convex functions in normed linear spaces. J. Optim. Theory Appl. (submitted) Google Scholar
  46. 46.
    Phu, H.X.: Representation of bounded convex sets by rational convex hull of its γ-extreme points. Numer. Funct. Anal. Optim. 15, 915–920 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Phu, H.X.: γ-Subdifferential and γ-convexity of functions on a normed space. J. Optim. Theory Appl. 85, 649–676 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1896) Google Scholar
  49. 49.
    Carathéodory, C.: Über den Variablitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32, 193–127 (1911) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Faculty of Information TechnologyLe Qui Don UniversityHanoiVietnam

Personalised recommendations