Advertisement

Journal of Optimization Theory and Applications

, Volume 148, Issue 2, pp 209–236 | Cite as

New Order Relations in Set Optimization

  • Johannes JahnEmail author
  • Truong Xuan Duc Ha
Article

Abstract

In this paper we study a set optimization problem (SOP), i.e. we minimize a set-valued objective map F, which takes values on a real linear space Y equipped with a pre-order induced by a convex cone K. We introduce new order relations on the power set \(\mathcal{P}(Y)\) of Y (or on a subset of it), which are more suitable from a practical point of view than the often used minimizers in set optimization. Next, we propose a simple two-steps unifying approach to studying (SOP) w.r.t. various order relations. Firstly, we extend in a unified scheme some basic concepts of vector optimization, which are defined on the space Y up to an arbitrary nonempty pre-ordered set \((\mathcal{Q},\preccurlyeq)\) without any topological or linear structure. Namely, we define the following concepts w.r.t. the pre-order \(\preccurlyeq\): minimal elements, semicompactness, completeness, domination property of a subset of \(\mathcal{Q}\), and semicontinuity of a set-valued map with values in \(\mathcal{Q}\) in a topological setting. Secondly, we establish existence results for optimal solutions of (SOP), when F takes values on \((\mathcal{Q},\preccurlyeq)\) from which one can easily derive similar results for the case, when F takes values on \(\mathcal{P}(Y)\) equipped with various order relations.

Keywords

Set optimization Order relations Existence results 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luc, D.T.: Vector Optimization. Lectures Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989) Google Scholar
  2. 2.
    Jahn, J.: Vector Optimization—Theory, Applications, and Extensions. Springer, Berlin (2004) zbMATHGoogle Scholar
  3. 3.
    Kuroiwa, D.: Some criteria in set-valued optimization. Investigations on nonlinear analysis and convex analysis (Japanese) (Kyoto, 1996). Surikaisekikenkyusho Kokyuroku No. 985, 171–176 (1997) Google Scholar
  4. 4.
    Kuroiwa, D.: Natural criteria of set-valued optimization. Manuscript, Shimane University, Japan (1998) Google Scholar
  5. 5.
    Kuroiwa, D.: The natural criteria in set-valued optimization. Research on nonlinear analysis and convex analysis (Japanese) (Kyoto, 1997). Surikaisekikenkyusho Kokyuroku No. 1031, 85–90 (1998) Google Scholar
  6. 6.
    Alonso, M., Rodríguez-Marín, L.: Set-relations and optimality conditions in set-valued maps. Nonlinear Anal. 63(8), 1167–1179 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Alonso, M., Rodríguez-Marín, L.: Optimality conditions for set-valued maps with set optimization. Nonlinear Anal. 70(9), 3057–3064 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ha, T.X.D.: Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl. 124(1), 187–206 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hamel, A.: Variational principles on metric and uniform spaces. Habilitation thesis, University of Halle-Wittenberg, Germany (2005) Google Scholar
  10. 10.
    Hamel, A., Löhne, A.: Minimal element theorems and Ekeland’s principle with set relations. J. Nonlinear Convex Anal. 7(1), 19–37 (2006) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hernández, E., Rodríguez-Marín, L.: Lagrangian duality in set-valued optimization. J. Optim. Theory Appl. 134(1), 119–134 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Hernández, E., Rodríguez-Marín, L.: Existence theorems for set optimization problems. Nonlinear Anal. 67(6), 1726–1736 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325(1), 1–18 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hernández, E., Rodríguez-Marín, L., Sama, M.: Some equivalent problems in set optimization. Oper. Res. Lett. 37(1), 61–64 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kuroiwa, D.: Some duality theorems of set-valued optimization with natural criteria. In: Nonlinear Analysis and Convex Analysis, Niigata, 1998, pp. 221–228. World Scientific, River Edge (1999) Google Scholar
  16. 16.
    Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47(2), 1395–1400 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kuroiwa, D.: Existence theorems of set optimization with set-valued maps. J. Inf. Optim. Sci. 24(1), 73–84 (2003) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kuroiwa, D.: Existence of efficient points of set optimization with weighted criteria. J. Nonlinear Convex Anal. 4(1), 117–123 (2003) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. In: Proceedings of the Second World Congress of Nonlinear Analysts, Part 3, Athens (1996) Google Scholar
  20. 20.
    Löhne, A.: Optimization with set relations: conjugate duality. Optimization 54(3), 265–282 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Rodríguez-Marín, L., Sama, G.: (Λ,C)-contingent derivatives of set-valued maps. J. Math. Anal. Appl. 335(2), 974–989 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Schröder, B.S.W.: Ordered Sets: An Introduction. Birkhäuser, Boston (2001) Google Scholar
  23. 23.
    Young, R.C.: The algebra of many-valued quantities. Math. Ann. 104, 260–290 (1931) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Nishnianidze, Z.G.: Fixed points of monotonic multiple-valued operators. Bull. Georgian Acad. Sci. 114, 489–491 (1984) (in Russian) MathSciNetzbMATHGoogle Scholar
  25. 25.
    Chiriaev, A., Walster, G.W.: Interval arithmetic specification. Technical Report (1998) Google Scholar
  26. 26.
    Sun Microsystems, Inc.: Interval Arithmetic Programming Reference. Palo Alto, USA (2000) Google Scholar
  27. 27.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009) zbMATHCrossRefGoogle Scholar
  28. 28.
    Chinaie, M., Zafarani, J.: Image space analysis and scalarization of multivalued optimization. J. Optim. Theory Appl. 142, 451–467 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Wu, H.-C.: Duality theory in interval-valued linear programming problems. Manuscript, National Kaohsiung Normal University, Taiwan (2010) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department MathematikUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Institute of MathematicsHanoiVietnam

Personalised recommendations