Skip to main content

Strong Convergence Theorems for Maximal Monotone Operators with Nonlinear Mappings in Hilbert Spaces

Abstract

Let C be a closed and convex subset of a real Hilbert space H. Let T be a nonexpansive mapping of C into itself, A be an α-inverse strongly-monotone mapping of C into H and let B be a maximal monotone operator on H, such that the domain of B is included in C. We introduce an iteration scheme of finding a point of F (T)∩(A+B)−10, where F (T) is the set of fixed points of T and (A+B)−10 is the set of zero points of A+B. Then, we prove a strong convergence theorem, which is different from the results of Halpern’s type. Using this result, we get a strong convergence theorem for finding a common fixed point of two nonexpansive mappings in a Hilbert space. Further, we consider the problem for finding a common element of the set of solutions of a mathematical model related to equilibrium problems and the set of fixed points of a nonexpansive mapping.

This is a preview of subscription content, access via your institution.

References

  1. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    MATH  Google Scholar 

  2. Takahashi, W., Tamura, T.: Convergence theorems for a pair of nonexpansive mappings. J. Convex Anal. 5, 45–56 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Das, G., Debata, J.P.: Fixed points of quasinonexpansive mappings. Indian J. Pure Appl. Math. 17, 1263–1269 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  MATH  Google Scholar 

  5. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  7. Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eshita, K., Takahashi, W.: Approximating zero points of accretive operators in general Banach spaces. JP J. Fixed Point Theory Appl. 2, 105–116 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: On a strongly nonexpansive sequence in Hilbert spaces. J. Nonlinear Convex Anal. 8, 471–489 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305, 227–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, H.K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Aust. Math. Soc. 65, 109–113 (2002)

    Article  MATH  Google Scholar 

  12. Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Takahashi, S., Takahashi, W.: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 69, 1025–1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)

    MathSciNet  MATH  Google Scholar 

  15. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Aoyama, K., Kimura, Y., Takahashi, W.: Maximal monotone operators and maximal monotone functions for equilibrium problems. J. Convex Anal. 15, 395–409 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000) (Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Takahashi.

Additional information

Communicated by J.-C. Yao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takahashi, S., Takahashi, W. & Toyoda, M. Strong Convergence Theorems for Maximal Monotone Operators with Nonlinear Mappings in Hilbert Spaces. J Optim Theory Appl 147, 27–41 (2010). https://doi.org/10.1007/s10957-010-9713-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9713-2

Keywords

  • Nonexpansive mapping
  • Maximal monotone operator
  • Inverse strongly-monotone mapping
  • Fixed point
  • Iteration procedure
  • Equilibrium problem