Journal of Optimization Theory and Applications

, Volume 147, Issue 1, pp 113–124 | Cite as

Structure and Weak Sharp Minimum of the Pareto Solution Set for Piecewise Linear Multiobjective Optimization

  • X. Q. YangEmail author
  • N. D. Yen


In this paper, the Pareto solution set of a piecewise linear multiobjective optimization problem in a normed space is shown to be the union of finitely many semiclosed polyhedra. If the problem is further assumed to be cone-convex, then it has the global weak sharp minimum property.


Piecewise linear functions Multiobjective optimization problems Pareto solution sets Global weak sharp minimum Image space analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zheng, X.Y., Yang, X.Q.: The structure of weak Pareto solution sets in piecewise linear multiobjective optimization in normed spaces. Sci. China, Ser. A, Math. 51, 1243–1256 (2008) CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Gowda, M.S., Sznajder, R.: On the pseudo-Lipschitzian behavior of the inverse of a piecewise affine function. In: Complementarity and Variational Problems, Baltimore, 1995, pp. 117–131. SIAM, Philadelphia (1997) Google Scholar
  3. 3.
    Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25, 73–78 (1979/1980) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cai, X.Q., Teo, K.L., Yang, X.Q., Zhou, X.Y.: Portfolio optimization under a minimax rule. Manag. Sci. 46, 957–972 (2000) CrossRefGoogle Scholar
  5. 5.
    Giannessi, F.: Theorem of the alternative and optimality conditions. J. Optim. Theory Appl. 42, 331–365 (1984) CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Arrow, K.J., Barankin, E.W., Blackwell, D.: Admissible points of convex sets. In: Contributions to the Theory of Games, vol. 2. Annals of Mathematics Studies, vol. 28, pp. 87–91. Princeton University Press, Princeton (1953) Google Scholar
  7. 7.
    Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989) Google Scholar
  8. 8.
    Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993) CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Studniarski, M., Ward, D.E.: Weak sharp minima: characterizations and sufficient conditions. SIAM J. Control Optim. 38, 219–236 (1999) CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Burke, J.V., Deng, S.: Weak sharp minima revisited, Part I: basic theory. Control Cybern. 31, 439–469 (2002) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Burke, J.V., Deng, S.: Weak sharp minima revisited, Part II: application to linear regularity and error bounds. Math. Program., Ser. B 104, 235–261 (2005) CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Zheng, X.Y., Yang, X.M., Teo, K.L.: Sharp minima for multiobjective optimization in Banach spaces. Set-Valued Anal. 14, 327–345 (2006) CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Deng, S., Yang, X.Q.: Weak Sharp minima in multicriteria linear programming. SIAM J. Optim. 15, 456–460 (2004) CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Zheng, X.Y., Yang, X.Q.: Weak sharp minima for piecewise linear multiobjective optimization in normed spaces. Nonlinear Anal. 68, 3771–3779 (2008) CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Giannessi, F.: Theorems of the alternative for multifunctions with applications to optimization: general results. J. Optim. Theory Appl. 55, 233–256 (1987) CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) zbMATHGoogle Scholar
  17. 17.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998) CrossRefzbMATHGoogle Scholar
  18. 18.
    Zalinescu, C.: Sharp estimates for Hoffman’s constant for systems of linear inequalities and equalities. SIAM J. Optim. 14, 517–533 (2003) CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Applied MathematicsHong Kong Polytechnic UniversityHung HomHong Kong
  2. 2.Institute of MathematicsVietnamese Academy of Science and TechnologyHanoiVietnam

Personalised recommendations