Advertisement

Parameter-dependent H Control for Time-varying Delay Polytopic Systems

  • V. N. PhatEmail author
  • Q. P. Ha
  • H. Trinh
Article

Abstract

This paper addresses the robust stabilization and H control problem for a class of linear polytopic systems with continuously distributed delays. The control objective is to design a robust H controller that satisfies some exponential stability constraints on the closed-loop poles. Using improved parameter-dependent Lyapunov Krasovskii functionals, new delay-dependent conditions for the robust H control are established in terms of linear matrix inequalities.

Keywords

H control Polytopic uncertain systems Time-delay Robust stabilization Linear matrix inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zames, G.: Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Automat. Control 26, 301–320 (1981) CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Francis, B.A.: A Course in H Control Theory. Springer, Berlin (1987) CrossRefzbMATHGoogle Scholar
  3. 3.
    Petersen, I.R., Ugrinovskii, V.A., Savkin, A.V.: Robust Control Design Using H Methods. Springer, London (2000) zbMATHGoogle Scholar
  4. 4.
    Ravi, R., Nagpal, K.M., Khargonekar, P.P.: H control of linear time-varying systems: A state-space approach. SIAM J. Control Optim. 29, 1394–1413 (1991) CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Kolmanovskii, V.B., Shaikhet, L.E.: Control of Systems with Aftereffect. Translations of Mathematical Monographs, vol. 157. Am. Math. Soc., Providence (1996) Google Scholar
  6. 6.
    Udwadia, F.E., von Bremen, H., Phohomsiri, P.: Time-delayed control design for active control of structures: Principles and applications. Struct. Control Health Monit. 14, 27–61 (2007) CrossRefGoogle Scholar
  7. 7.
    Udwadia, F.E., Hosseini, M., Chen, Y.: Robust control of uncertain systems with time-varying delays in control input. In: Proc. of the American Control Conference, USA, pp. 3840–3845 (1997) Google Scholar
  8. 8.
    Fridman, E., Shaked, U.: Delay-dependent stability and H control: constant and time-varying delays. Int. J. Control 76, 48–60 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Kwon, O.M., Park, J.H.: Robust H filtering for uncertain time-delay systems: Matrix inequality approach. J. Optim. Theory Appl. 129, 309–324 (2006) CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Phat, V.N., Nam, P.T.: Robust stabilization of linear systems with delayed state and control. J. Optim. Theory Appl. 140, 287–299 (2009) CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Phat, V.N., Ha, Q.P.: H control and exponential stability for a class of nonlinear non-autonomous systems with time-varying delay. J. Optim. Theory Appl. 142, 603–618 (2009) CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Gao, H., Meng, X., Chen, T.: A parameter-dependent approach to robust filtering for time-delay systems. IEEE Trans. Automat. Control 53, 2420–2425 (2008) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Zhang, J., Xia, Y., Shi, P.: Parameter-dependent robust H filtering for uncertain discrete-time systems. Automatica 45, 560–565 (2009) CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Colaneri, P., Geromel, J.C.: Parameter dependent Lyapunov function for time-varying polytopic systems. In: Proc. Amer. Contr. Conf., Portland OR, pp. 604–608 (2005) Google Scholar
  15. 15.
    Mori, T., Kokame, H.: A parameter-dependent Lyapunov function for a polytope of matrices. IEEE Trans. Automat. Control 45, 1516–1519 (2000) CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Nam, P.T., Phat, V.N.: Robust exponential stability and stabilization of linear uncertain polytopic time-delay systems. J. Control Theory Appl. 6, 163–170 (2008) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Niculescu, S.L.: H memoryless control with stability constraint for time-delay systems: an LMI approach. IEEE Trans. Automat. Control 43, 739–743 (1998) CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Mondié, S., Kharitonov, V.L.: Exponential estimates for retarded time-delay systems: An LMI approach. IEEE Trans. Automat. Control 50, 268–273 (2005) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994) zbMATHGoogle Scholar
  20. 20.
    Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proc. of the 39th IEEE Conf. on Decision and Control, Sydney, Australia, pp. 2805–2810 (2000) Google Scholar
  21. 21.
    Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: LMI Control Toolbox: For Use with Matlab. The Math Work, Inc, Natick (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of MathematicsVASTHanoiVietnam
  2. 2.Faculty of Engineering and Information TechnologyUniversity of Technology SydneySydneyAustralia
  3. 3.School of EngineeringDeakin UniversityGeelongAustralia

Personalised recommendations