Skip to main content

Advertisement

Log in

Optimization and Variational Inequalities with Pseudoconvex Functions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the present paper we consider a pseudoconvex (in an extended sense) function f using higher order Dini directional derivatives. A Variational Inequality, which is a refinement of the Stampacchia Variational Inequality, is defined. We prove that the solution set of this problem coincides with the set of global minimizers of f if and only if f is pseudoconvex. We introduce a notion of pseudomonotone Dini directional derivatives (in an extended sense). It is applied to prove that the solution sets of the Stampacchia Variational Inequality and Minty Variational Inequality coincide if and only if the function is pseudoconvex. At last, we obtain several characterizations of the solution set of a program with a pseudoconvex objective function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levi, E.E.: Studi sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Ann. Mat. Pura Appl. 17, 61–68 (1910)

    Google Scholar 

  2. Tuy, H.: Sur les inégalités linéaires. Colloq. Math. 13, 107–123 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Mangasarian, O.L.: Pseudo-convex functions. SIAM J. Control 3, 281–290 (1965)

    MathSciNet  MATH  Google Scholar 

  4. Mangasarian, O.L.: Nonlinear Programming. Classics in Applied Mathematics, vol. 10. SIAM, Philadelphia (1994). Repr. of the orig. 1969

    MATH  Google Scholar 

  5. Ginchev, I., Ivanov, V.I.: Higher-order pseudoconvex functions. In: Konnov, I.V., Luc, D.T., Rubinov, A.M. (eds.) Lecture Notes in Econ. and Math. Systems, vol. 583, pp. 247–264. Springer, New York (2007)

    Google Scholar 

  6. Ginchev, I., Ivanov, V.I.: Second-order optimality conditions for problems with C1 data. J. Math. Anal. Appl. 340, 646–657 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Karamardian, S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37–46 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Komlósi, S.: Generalized monotonicity in nonsmooth analysis. In: Komlósi, S., Rapcsák, T., Schaible, S. (eds.) Lecture Notes in Econ. and Math. Systems, vol. 405, pp. 263–275. Springer, New York (1994)

    Google Scholar 

  10. Komlósi, S.: Generalized monotonicity and generalized convexity. J. Optim. Theory Appl. 84, 361–376 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Minty, J.G.: On the generalization of a direct method of the calculus of variations. Bull. AMS 73, 315–321 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ivanov, V.I.: On variational inequalities and nonlinear programming problem. Studia Sci. Math. Hung. 45, 483–491 (2008)

    MATH  Google Scholar 

  13. Komlósi, S.: On the Stampacchia and Minty variational inequalities. In: Giorgi, G., Rossi, F. (eds.) Generalized Convexity and Optimization for Economic and Financial Decisions, pp. 231–260. Pitagora Editrice, Bologna (1999)

    Google Scholar 

  14. Crespi, G., Ginchev, I., Rocca, M.: Minty variational inequalities, increase along rays property and optimization. J. Optim. Theory Appl. 123, 479–496 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Crespi, G., Ginchev, I., Rocca, M.: Existence of solutions and star-shapedness in Minty variational inequalities. J. Glob. Optim. 32, 485–494 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crespi, G., Ginchev, I., Rocca, M.: Some remarks on the Minty vector variational principle. J. Math. Anal. Appl. 345, 165–175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7, 21–26 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeyakumar, V., Yang, X.Q.: On characterizing the solution sets of pseudolinear programs. J. Optim. Theory Appl. 87, 747–755 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ivanov, V.I.: First-order characterizations of pseudoconvex functions. Serdica Math. J. 27, 203–218 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Ivanov, V.I.: Characterizations of the solution sets of generalized convex minimization problems. Serdica Math. J. 29, 1–10 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Diewert, W.E.: Alternative characterizations of six kind of quasiconvexity in the nondifferentiable case with applications to nonsmooth programming. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 51–93. Academic Press, New York (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Ivanov.

Additional information

Communicated by G. Di Pillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, V.I. Optimization and Variational Inequalities with Pseudoconvex Functions. J Optim Theory Appl 146, 602–616 (2010). https://doi.org/10.1007/s10957-010-9682-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9682-5

Keywords

Navigation