Skip to main content
Log in

Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present in this paper an integer diagonalization approach for deriving new lower bounds for general quadratic integer programming problems. More specifically, we introduce a semiunimodular transformation in order to diagonalize a symmetric matrix and preserve integral property of the feasible set at the same time. Via the semiunimodular transformation, the resulting separable quadratic integer program is a relaxation of the nonseparable quadratic integer program. We further define the integer diagonalization dual problem to identify the best semiunimodular transformation and analyze some basic properties of the set of semiunimodular transformations for a rational symmetric matrix. In particular, we present a complete characterization of the set of all semiunimodular transformations for a nonsingular 2×2 symmetric matrix. We finally discuss Lagrangian relaxation and convex relaxation schemes for the resulting separable quadratic integer programming problem and compare the tightness of different relaxation schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  2. Baldick, R.: A unified approach to polynomially solvable cases of integer “nonseparable” quadratic optimization. Discrete Appl. Math. 61, 195–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hochbaum, D.S., Shamir, R., Shanthikumar, J.G.: A polynomial algorithm for an integer quadratic nonseparable transportation problem. Math. Program. 55, 359–371 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, D., Sun, X.L., Gu, S.S., Liu, C.L.: Polynomially solvable cases of binary quadratic programs. In: Chinchuluun, A., Pardalos, P.M., Enkhbat, R., Tseveendorj, I. (eds.) Optimization and Optimal Control: Theory and Applications. Springer, Berlin (2010, to appear)

  5. Pardalos, P.M., Rodgers, G.P.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, H.X., Pardalos, P.M., Prokopyev, O.A.: Lower bound improvement and forcing rule for quadratic binary programming. Comput. Optim. Appl. 33, 187–208 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pardalos, P.M., Chaovalitwongse, W., Iasemidis, L.D., Sackellares, J.C., Shiau, D.-S., Carney, P.R., Prokopyev, O.A., Yatsenko, V.A.: Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. Ser. B 101, 365–385 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iasemidis, L.D., Pardalos, P.M., Sackellares, J.C., Shiau, D.-S.: Quadratic binary programming and dynamic system approach to determine the predictability of epileptic seizures. J. Comb. Optim. 5, 9–26 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caprara, A.: Constrained 0–1 quadratic programming: basic approaches and extensions. Eur. J. Oper. Res. 187, 1494–1503 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, D., Sun, X.L.: Nonlinear Integer Programming. Springer, New York (2006)

    MATH  Google Scholar 

  11. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176, 657–690 (2007)

    Article  MATH  Google Scholar 

  12. Pardalos, P.M., Wolkowicz, H.: The quadratic assignment problem: a survey and recent developments. In: Pardalos, P.M., Rendl, F., Wolkowicz, H. (eds.) Quadratic Assignment and Related Problems. DIMACS Series, pp. 1–39. American Mathematical Society, Providence (1994)

    Google Scholar 

  13. Pisinger, D.: The quadratic knapsack problem—a survey. Discrete Appl. Math. 155, 623–648 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bretthauer, K.M., Shetty, B.: The nonlinear knapsack problem—algorithms and applications. Eur. J. Oper. Res. 138, 459–472 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Djerdjour, M., Mathur, K., Salkin, H.: A surrogate-based algorithm for the general quadratic multidimensional knapsack. Oper. Res. Lett. 7, 253–257 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Quadri, D., Soutif, E., Tolla, P.: Exact solution method to solve large scale integer quadratic multidimensional knapsack problems. J. Comb. Optim. 17, 157–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, D., Sun, X.L., Wang, F.L.: Convergent Lagrangian and contour-cut method for nonlinear integer programming with a quadratic objective function. SIAM J. Optim. 17, 372–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, D., Sun, X.L., Wang, J.: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Math. Finance 16, 83–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Syam, S.S.: A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals. Eur. J. Oper. Res. 108, 196–207 (1998)

    Article  MATH  Google Scholar 

  20. Erenguc, S.S., Benson, H.P.: An algorithm for indefinite integer quadratic programming. Comput. Math. Appl. 21, 99–106 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thoai, N.V.: Global optimization techniques for solving the general quadratic integer programming problem. Comput. Optim. Appl. 10, 149–163 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gupta, R., Bandopadhyaya, L., Puri, M.C.: Ranking in quadratic integer programming problems. Eur. J. Oper. Res. 95, 231–236 (1996)

    Article  MATH  Google Scholar 

  23. Djerdjour, M.: An enumerative algorithm framework for a class of nonlinear integer programming problems. Eur. J. Oper. Res. 101, 104–121 (1997)

    Article  MATH  Google Scholar 

  24. An, L.T.H., Tao, P.D.: Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J. Glob. Optim. 11, 253–285 (1997)

    Article  MATH  Google Scholar 

  25. Barrientos, O., Correa, R.: An algorithm for global minimization of linearly constrained quadratic functions. J. Glob. Optim. 16, 77–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Floudas, C.A., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 217–269. Kluwer Academic, Dordrecht (1995)

    Google Scholar 

  27. Pardalos, P.M., Glick, J.H., Rosen, J.B.: Global minimization of indefinite quadratic problems. Computing 39, 281–291 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pardalos, P.M., Rosen, J.B.: Constrained Global Optimization: Algorithms and Applications. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  29. Phillips, A.T., Rosen, J.B.: Guaranteed ε-approximate solution for indefinite quadratic global minimization. Nav. Res. Logist. 37, 499–514 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rosen, J.B., Pardalos, P.M.: Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Program. 34, 163–174 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. An, L.T.H., Tao, P.D., Muu, L.D.: A combined D.C. optimization, ellipsoidal branch-and-bound algorithm for solving nonconvex quadratic programming problems. J. Comb. Optim. 2, 9–28 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kalantari, B., Rosen, J.B.: An algorithm for global minimization of linearly constrained concave quadratic functions. Math. Oper. Res. 12, 544–561 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sherali, H.D., Tuncbilek, C.H.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7, 1–31 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113, 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. An, L.T.H., Tao, P.D.: A branch and bound method via D.C. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. J. Glob. Optim. 13, 171–206 (1998)

    Article  MATH  Google Scholar 

  36. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24, 163–185 (2002)

    Article  MATH  Google Scholar 

  37. Burer, S., Vandenbussche, D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. 43, 181–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. de Angelis, P.L., Bomze, I.M., Toraldo, G.: Ellipsoidal approach to box-constrained quadratic problems. J. Glob. Optim. 28, 1–15 (2004)

    Article  MATH  Google Scholar 

  39. de Klerk, E., Pasechnik, D.V.: A linear programming reformulation of the standard quadratic optimization problem. J. Glob. Optim. 37, 75–84 (2007)

    Article  MATH  Google Scholar 

  40. Nowak, I.: A new semidefinite programming bound for indefinite quadratic forms over a simplex. J. Glob. Optim. 14, 357–364 (1999)

    Article  MATH  Google Scholar 

  41. Vanderbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102, 371–405 (2005)

    Article  MathSciNet  Google Scholar 

  42. Vanderbussche, D., Nemhauser, G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102, 531–557 (2005)

    Article  MathSciNet  Google Scholar 

  43. Yajima, Y., Fujie, T.: A polyhedral approach for nonconvex quadratic programming problems with box constraints. J. Glob. Optim. 13, 151–170 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  45. Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much harder than linear optimization. J. ACM 37, 843–862 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, D., Sun, X.L., Wang, J., McKinnon, K.I.M.: Convergent Lagrangian and domain cut method for nonlinear knapsack problems. Comput. Optim. Appl. 42, 67–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Newmann, M.: Integral Matrices. Academic Press, San Diego (1972)

    Google Scholar 

  48. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    MATH  Google Scholar 

  49. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  50. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming problems. Manage. Sci. 27, 1–18 (1981)

    Article  MATH  Google Scholar 

  51. Parker, R.G., Rardin, R.L.: Discrete Optimization. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  52. ILOG: ILOG CPLEX 10.0 Callable Library Reference Manual (2006)

  53. Sahinidis, N.V., Tawarmalani, M.: BARON 7.2.5: Global Optimization of Mixed-Integer Nonlinear Programs. User’s Manual (2005)

  54. Testa, F.J.: Congruence diagonalization and Lie groups. SIAM J. Appl. Math. 28, 54–59 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Li.

Additional information

Communicated by P.M. Pardalos.

This work was supported by National Natural Science Foundation of China under Grants 10971034, 70832002, and by Research Grants Council of Hong Kong under Grant 414207.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X.J., Sun, X.L. & Li, D. Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach. J Optim Theory Appl 146, 463–489 (2010). https://doi.org/10.1007/s10957-010-9653-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9653-x

Keywords

Navigation