Skip to main content
Log in

Inexact A-Proximal Point Algorithm and Applications to Nonlinear Variational Inclusion Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A generalization to the Rockafellar theorem (1976) on the linear convergence in the context of approximating a solution to a general class of inclusion problems involving set-valued A-maximal relaxed monotone mappings using the proximal point algorithm in a real Hilbert space setting is given. There exists a vast literature on this theorem, but most of the investigations are focused on relaxing the proximal point algorithm and applying it to the inclusion problems. The general framework for A-maximal relaxed monotonicity generalizes the theory of set-valued maximal monotone mappings, including H-maximal monotone mappings. The obtained results are general in nature, while application-oriented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Attouch, H.: Variational Convergence for Functions and Operators. Applied Mathematics Series. Pitman, London (1984)

    MATH  Google Scholar 

  3. Fang, Y.P., Huang, N.J.: H-monotone operators and system of variational inclusions. Commun. Appl. Nonlinear Anal. 11(1), 93–101 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Lan, H.Y., Kim, J.K., Cho, Y.J.: On a new system of nonlinear A-monotone multivalued variational inclusions. J. Math. Anal. Appl. 327(1), 481–493 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lan, H.Y., Cho, Y.J., Verma, R.U.: Nonlinear relaxed cocoercive variational inclusions involving (A,η)-accretive mappings in Banach spaces. Comput. Math. Appl. 51, 1529–1538 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Liu, Z., Gao, H., Verma, R.U., Kang, S.M.: Existence and algorithm of solutions for a class of generalized nonlinear variational-like inequalities in reflexive Banach spaces. Commun. Appl. Nonlinear Anal. 14(4), 47–65 (2008)

    MathSciNet  Google Scholar 

  7. Moudafi, A.: Mixed equilibrium problems: sensitivity analysis and algorithmic aspect. Comput. Math. Appl. 44, 1099–1108 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    MATH  MathSciNet  Google Scholar 

  10. Tossings, P.: The perturbed proximal point algorithm and some of its applications. Appl. Math. Optim. 29, 125–159 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Verma, R.U.: A-monotonicity and its role in nonlinear variational inclusions. J. Optim. Theory Appl. 129(3), 457–467 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Verma, R.U.: General System of A-monotone nonlinear variational inclusion problems with applications. J. Optim. Theory Appl. 131(1), 151–157 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Verma, R.U.: A generalized system for relaxed cocoercive variational inequalities and projection methods. J. Optim. Theory Appl. 121(1), 203–210 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Verma, R.U.: A-monotone nonlinear relaxed cocoercive variational inclusions. Central Eur. J. Math. 5(2), 386–396 (2007)

    Article  MATH  Google Scholar 

  16. Verma, R.U.: A generalization to variational convergence for operators. Adv. Nonlinear Var. Inequal. 11(2), 97–101 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Verma, R.U.: Approximation solvability of a class of nonlinear set-valued inclusions involving (A,η)-monotone mappings. J. Math. Anal. Appl. 337, 969–975 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16(12), 1127–1138 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66(2), 240–256 (2002)

    Article  MATH  Google Scholar 

  20. Zeidler, E.: Nonlinear Functional Analysis and Its Applications I. Springer, New York (1986)

    MATH  Google Scholar 

  21. Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/A. Springer, New York (1990)

    MATH  Google Scholar 

  22. Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/B. Springer, New York (1990)

    MATH  Google Scholar 

  23. Zeidler, E.: Nonlinear Functional Analysis and Its Applications III. Springer, New York (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Agarwal.

Additional information

Communicated by F. Potra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, R.P., Verma, R.U. Inexact A-Proximal Point Algorithm and Applications to Nonlinear Variational Inclusion Problems. J Optim Theory Appl 144, 431–444 (2010). https://doi.org/10.1007/s10957-009-9615-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-009-9615-3

Keywords

Navigation