Skip to main content

Advertisement

Log in

Gap Function Approach to the Generalized Nash Equilibrium Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider an optimization reformulation approach for the generalized Nash equilibrium problem (GNEP) that uses the regularized gap function of a quasi-variational inequality (QVI). The regularized gap function for QVI is in general not differentiable, but only directionally differentiable. Moreover, a simple condition has yet to be established, under which any stationary point of the regularized gap function solves the QVI. We tackle these issues for the GNEP in which the shared constraints are given by linear equalities, while the individual constraints are given by convex inequalities. First, we formulate the minimization problem involving the regularized gap function and show the equivalence to GNEP. Next, we establish the differentiability of the regularized gap function and show that any stationary point of the minimization problem solves the original GNEP under some suitable assumptions. Then, by using a barrier technique, we propose an algorithm that sequentially solves minimization problems obtained from GNEPs with the shared equality constraints only. Further, we discuss the case of shared inequality constraints and present an algorithm that utilizes the transformation of the inequality constraints to equality constraints by means of slack variables. We present some results of numerical experiments to illustrate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR: Q. J. Oper. Res. 5, 173–210 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hobbs, B.F., Pang, J.S.: Nash-Cournot equilibrium in electric power markets with piecewise linear demand functions and joint constraints. Oper. Res. 55, 113–127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Pang, J.S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2, 21–56 (2005); Erratum, Comput. Manag. Sci. 6, 373–375 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Haurie, A., Krawczyk, J.B.: Optimal charges on river effluent from lumped and distributed sources. Environ. Model. Assess. 2, 93–106 (1997)

    Google Scholar 

  5. Krawczyk, J.B.: Coupled constraint Nash equilibria in environmental games. Resource Energy Econ. 27, 157–181 (2005)

    Article  Google Scholar 

  6. Krawczyk, J.B., Uryasev, S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5, 63–73 (2000)

    Article  Google Scholar 

  7. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  8. Harker, P.T.: A variational inequality approach for the determination of oligopolistic market equilibrium. Math. Program. 30, 105–111 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Facchinei, F., Pang, J.S.: Exact penalty functions for generalized Nash problems. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 115–126. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Fukushima, M.: Restricted generalized Nash equilibria and controlled penalty algorithm. Comput. Manag. Sci. (to appear)

  12. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave N-person games. Econometrica 33, 520–534 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  13. Facchinei, F., Fischer, A., Piccialli, P.: Generalized Nash equilibrium problems and Newton methods. Math. Program. 117, 163–194 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. von Heusinger, A., Kanzow, C., Fukushima, M.: Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation. Technical Report 2009-006, Department of Applied Mathematics and Physics, Kyoto University (2009)

  15. Nabetani, K., Tseng, P., Fukushima, M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. (to appear)

  16. von Heusinger, A., Kanzow, C.: Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions. Comput. Optim. Appl. 43, 353–377 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54, 81–94 (1991)

    Article  MATH  Google Scholar 

  18. Bensoussan, A.: Points de Nash dans le cas de fontionnelles quadratiques et jeux differentiels linéaires a n personnes. SIAM J. Control 12, 460–499 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fukushima, M.: A class of gap functions for quasi-variational inequality problems. J. Ind. Manag. Optim. 3, 165–171 (2007)

    MATH  MathSciNet  Google Scholar 

  20. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Auslender, A.: Optimisation: Méthodes Numériques. Masson, Paris (1976)

    MATH  Google Scholar 

  22. Kesselman, A., Leonardi, S., Bonifaci, V.: Game-theoretic analysis of internet switching with selfish users. In: Lecture Notes in Computer Science, vol. 3828, pp. 236–245. Springer, Berlin (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fukushima.

Additional information

Communicated by F. Giannessi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, K., Fukushima, M. Gap Function Approach to the Generalized Nash Equilibrium Problem. J Optim Theory Appl 144, 511–531 (2010). https://doi.org/10.1007/s10957-009-9614-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-009-9614-4

Keywords

Navigation