Skip to main content
Log in

An Interior-Point Algorithm for Nonlinear Minimax Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present a primal-dual interior-point method for constrained nonlinear, discrete minimax problems where the objective functions and constraints are not necessarily convex. The algorithm uses two merit functions to ensure progress toward the points satisfying the first-order optimality conditions of the original problem. Convergence properties are described and numerical results provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl. 89(3), 507–541 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kojima, M., Mizuno, S., Yoshise, A.: A primal-dual interior point method for linear programming. In: Megiddo, N. (ed.) Progress in Mathematical Programming, pp. 29–47. Springer, New York (1989)

    Google Scholar 

  4. Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: jamming and numerical testing. Math. Program. Ser. A 99(1), 35–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Du, D.-Z., Pardalos, P.M.: Minimax and Applications. Nonconvex Optimization and Its Applications. Springer, Dordrecht (1995)

    Google Scholar 

  6. Rustem, B., Howe, M.: Algorithms for Worst-Case Design and Applications to Risk Management. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  7. Akrotirianakis, I., Rustem, B.: A globally convergent interior point algorithm for non-linear problems. J. Optim. Theory Appl. 125(3), 497–521 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rustem, B.: A constrained min-max algorithm for rival models of the same economic system. Math. Program. Ser. A 53(3), 279–295 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Medanić, J., Andjelić, M.: On a class of differential games without saddle-point solutions. J. Optim. Theory Appl. 8, 413–430 (1971)

    Article  MATH  Google Scholar 

  10. Medanić, J., Andjelić, M.: Minimax solution of the multiple-target problem. IEEE Trans. Automat. Control 17(5), 597–604 (1972)

    Article  MATH  Google Scholar 

  11. Vanderbei, R.J., Shanno, D.F.: An interior point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chamberlain, R.M., Powell, M.J.D., Lemarechal, C., Pedersen, H.C.: The watchdog technique for forcing convergence in algorithms for constrained optimization. Math. Program. Stud. 16, 1–17 (1982)

    MATH  MathSciNet  Google Scholar 

  13. Gay, D.M., Overton, M.L., Wright, M.H.: A primal-dual interior method for nonconvex nonlinear programming. In: Yuan, Y. (ed.) Advances in Nonlinear Programming, Beijing, 1996. Appl. Optim., vol. 14, pp. 31–56. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  14. Rustem, B.: Convergent stepsizes for constrained optimization algorithms. J. Optim. Theory Appl. 49, 135–160 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rustem, B.: Equality and inequality constrained optimization algorithms with convergent stepsizes. J. Optim. Theory Appl. 76(3), 429–453 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rustem, B., Nguyen, Q.: An algorithm for the inequality-constrained discrete min-max problem. SIAM J. Optim. 8(1), 265–283 (1998) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yamashita, H.: A globally convergent primal–dual interior point method for constrained optimization. Optim. Methods Softw. 10, 443–469 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yamashita, H., Yabe, H.: Superlinear and quadratic convergence of some primal–dual interior point methods for constrained optimization. Math. Program. 75, 377–397 (1996)

    MathSciNet  Google Scholar 

  19. Tzallas-Regas, G.: Switching stepsize strategies for nonlinear programming. Ph.D. Thesis. University of London, Imperial College London, London (2007)

    Google Scholar 

  20. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL—A Modeling Language for Mathematical Programming. The Scientific Press, London (1993)

    Google Scholar 

  21. Benson, H.: The Cute AMPL models, http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/cute (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tzallas-Regas.

Additional information

Communicated by P.M. Pardalos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obasanjo, E., Tzallas-Regas, G. & Rustem, B. An Interior-Point Algorithm for Nonlinear Minimax Problems. J Optim Theory Appl 144, 291–318 (2010). https://doi.org/10.1007/s10957-009-9599-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-009-9599-z

Keywords

Navigation