Skip to main content
Log in

New Approach to Solving a System of Variational Inequalities and Hierarchical Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper deals with a viscosity iterative method, in real Hilbert spaces, for solving a system of variational inequalities over the fixed-point sets of possibly discontinuous mappings. Under classical conditions, we prove a strong convergence theorem for our method. The proposed algorithm can be applied for instance to solving variational inequalities in some situations when the projection methods fail. Moreover, the techniques of analysis are novel and provide new tools in designing approximation schemes for combined and bilevel optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejer monotone methods in Hilbert space. Math. Oper. Res. 26, 248–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Combettes, P.L.: Convex set theoretic image recovery by extrapolated iterations of paralell subgradients projections. IEEE Trans. Image Process. 6, 493–506 (1997)

    Article  Google Scholar 

  3. Combetes, P.L., Pesquet, J.C.: Image restoration subject to a total variation constraint. IEEE Trans. Image Process. 13, 1213–1222 (2004)

    Article  Google Scholar 

  4. Yamada, I., Ogura, N.: Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cabot, A.: Proximest Point and Steepest descent algorithm controlled by a slowly vanishing term. Applications to hierarchical minimization. SIAM J. Optim. 2, 555–572 (2005)

    Article  MathSciNet  Google Scholar 

  6. Deutsch, F., Yamada, I.: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings. Numer. Funct. Anal. Optim. 19, 33–55 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mainge, P.E., Moudafi, A.: Strong convergence of an iterative method for hierarchical fixed point problems. Pac. J. Optim. 3(3), 529–538 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Moudafi, A., Mainge, P.E.: Towards viscosity approximations of hierarchical fixed point problems. J. Fixed Point Theory Appl. ID95453 (2006)

  9. Solodov, M.V.: An explicit descent method for bilevel convex optimization. J. Convex Anal. 14, 227–238 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Yamada, I., Ogura, N., Shirakawa, N.: A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems. In: Nashed, Z., Scherzer, O. (eds.) Inverse Problems, Image Analysis and Medical Imaging. Contemporary Mathematics, vol. 313, pp. 269–305. Am. Math. Soc., Providence (2002)

    Google Scholar 

  11. Xu, H.K., Kim, T.H.: Convergence of Hybrid steepest descent methods for variational inequalities. J. Optim. Theory Appl. 119, 185–201 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zen, L.C., Wong, N.C., Yao, J.C.: Convergence analysis of modified hybrid steepest descent methods with variable parameters for variational inequalities. J. Optim. Theory Appl. 132(1), 51–69 (2007)

    Article  MathSciNet  Google Scholar 

  13. Verma, R.U.: Projection methods, algorithms, and a new system of nonlinear variational inequalities. Comput. Math. Appl. 41, 1025–1031 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Verma, R.U.: General convergence analysis for two-step projection methods and applications to variational problems. Appl. Math. Lett. 18, 1286–1292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Verma, R.U.: Generalized system for relaxed cocoercive variational inequalities and projection methods. J. Optim. Theory Appl. 121(1), 203–210 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Buzogany, E., Mezei, I., Varga, V.: Two-variable variational-hemivariational inequalities. Stud. Univ. Babes-Bolay Math. XLVII(3), 31–41 (2000)

    MathSciNet  Google Scholar 

  17. Kassay, G., Kolumban, J., Pales, Z.: On Nash stationary points. Publ. Math. 54, 267–279 (1999)

    MATH  MathSciNet  Google Scholar 

  18. Kassay, G., Kolumban, J., Pales, Zs.: Factorization of Minty and Stampacchia variational inequality systems. Eur. J. Oper. Res. 143, 377–389 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kassay, G., Kolumban, J.: System of multi-valued variational inequalities. Publ. Math. 56, 185–195 (2000)

    MATH  MathSciNet  Google Scholar 

  20. Popov, L.D.: On a one-stage method for solving lexicographic variational inequalities. Russ. Math. 42(12), 71–81 (1998)

    Google Scholar 

  21. Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000)

    Google Scholar 

  22. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  23. Antipin, A.S.: Solution methods for variational inequalities with coupled constraints. Comput. Math. Math. Phys. 40(9), 1291–1307 (2000)

    MathSciNet  Google Scholar 

  24. Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202(1), 150–159 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wittman, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58(5), 486–491 (1992)

    Article  MathSciNet  Google Scholar 

  26. Liu, L.: Approximation of fixed points of a strictly pseudocontractive mapping. In: Proceedings of the American Mathematical Society, vol. 125, no. 5, pp. 1363–1366. Am. Math. Soc., Providence (1997)

    Google Scholar 

  27. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  28. Maruster, S.: The solution by iteration of nonlinear equations in Hilbert spaces. In: Proceedings of the American Mathematical Society, vol. 63, no. 1, pp. 69–73. Am. Math. Soc., Providence (1997)

    Google Scholar 

  29. Ding, K., Yan, W.Y., Huang, N.J.: A new system of generalized nonlinear relaxed cocoercive variational inequalities. J. Ineq. Appl. 40591, 1–14 (2006)

    Google Scholar 

  30. Suzuki, T.: A sufficient and necessary condition for Halper-type strong convergence to fixed points of nonexpansive mappings. In: Proceedings of the American Mathematical Society, vol. 135, no. 1, pp. 99–106. Am. Math. Soc., Providence (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Maingé.

Additional information

Communicated by Masao Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maingé, P.E. New Approach to Solving a System of Variational Inequalities and Hierarchical Problems. J Optim Theory Appl 138, 459–477 (2008). https://doi.org/10.1007/s10957-008-9433-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-008-9433-z

Keywords

Navigation