Skip to main content
Log in

Sequential Quadratic Programming Method for Volatility Estimation in Option Pricing

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Our goal is to identify the volatility function in Dupire’s equation from given option prices. Following an optimal control approach in a Lagrangian framework, a globalized sequential quadratic programming (SQP) algorithm combined with a primal-dual active set strategy is proposed. Existence of local optimal solutions and of Lagrange multipliers is shown. Furthermore, a sufficient second-order optimality condition is proved. Finally, some numerical results are presented underlining the good properties of the numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)

    Google Scholar 

  2. Bouchouev, I., Isakov, V.: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets. Inverse Probl. 15(3), 95–116 (1999)

    Article  MathSciNet  Google Scholar 

  3. Hanke, M., Rösler, E.: Computation of local volatilities from regularized Dupire equations. Int. J. Theor. Appl. Finance 8(2), 207–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Avellaneda, M., Friedman, C., Holmes, R., Samperi, D.: Calibrating volatility surfaces via relative-entropy minimization. Appl. Math. Finance 4(1), 37–64 (1997)

    Article  MATH  Google Scholar 

  5. Lagnado, R., Osher, S.: A technique for calibrating derivative security pricing models: numerical solution of an inverse problem. J. Comput. Finance 1, 13–25 (1997)

    Google Scholar 

  6. Achdou, Y., Pironneau, O.: Volatility smile by multilevel least square. Int. J. Theor. Appl. Finance 5(6), 619–643 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jackson, N., Süli, E., Howison, S.: Computation of deterministic volatility surfaces. J. Comput. Finance 2, 5–32 (1999)

    Google Scholar 

  8. Crépey, S.: Calibration of the local volatility in a trinomial tree using Tikhonov regularization. Inverse Probl. 19(1), 91–127 (2003)

    Article  MATH  Google Scholar 

  9. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (1996)

    MATH  Google Scholar 

  10. Crépey, S.: Calibration of the local volatility in a generalized Black–Scholes model using Tikhonov regularization. SIAM J. Math. Anal. 34(5), 1183–1206 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Egger, H., Engl, H.W.: Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates. Inverse Probl. 21, 1027–1045 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. In: Iserles, A. (ed.) Acta Numerica, pp. 1–51. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  13. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 35, 1524–1543 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hintermüller, M.: A primal-dual active set algorithm for bilaterally control constrained optimal control problems. Q. Appl. Math. 61, 131–161 (2003)

    MATH  Google Scholar 

  15. Barles, G., Daher, C., Romano, M.: Convergence of numerical schemes for parabolic equations arising in finance theory. Math. Methods Appl. Sci. 5(1), 125–143 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kangro, P., Nicolaides, R.: Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38, 1357–1368 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dautray, R., Lions, J.-P.: Mathematical Analysis and Numerical Methods for Science and Technology. Evolution Problems, vol. 5. Springer, Berlin (1992)

    MATH  Google Scholar 

  18. Lions, J.-L.: Control of Distributed Singular Systems. Gauthier-Villars, Paris (1983)

    Google Scholar 

  19. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS Transl., vol. 23. Am. Math. Soc., Providence (1968)

    Google Scholar 

  20. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  21. Bonnans, J.F.: Second-order analysis for control constrained optimal control problems of semilinear elliptic systems. Appl. Math. Optim. 38, 303–325 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hintermüller, M.: On a globalized augmented Lagrangian-SQP algorithm for nonlinear optimal control problems with box constraints. Int. Ser. Numer. Math. 138, 139–153 (2001)

    Google Scholar 

  23. Ito, K., Kunisch, K.: Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. Nonlinear Anal. 41, 591–616 (2000)

    Article  MathSciNet  Google Scholar 

  24. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Mathematics in Science and Engineering, vol. 190. Academic Press, Boston (1993)

    MATH  Google Scholar 

  25. Ito, K., Kunisch, K.: The primal-dual active set method for nonlinear problems with bilateral constraints. SIAM J. Control Optim. 43(1), 357–376 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bonnans, J.F.: Optimisation Numérique. Springer, Paris (1997)

    MATH  Google Scholar 

  27. Jackwerth, J.C.: Recovering risk aversion from option prices and realized returns. Rev. Finance Stud. 13, 433–451 (2000)

    Article  Google Scholar 

  28. Jackwerth, J.C., Rubinstein, M.: Recovering probability distributions from contemporary security prices. J. Finance 51, 347–369 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Düring.

Additional information

Communicated by H.J. Pesch.

The first and second author acknowledge partial support from the Deutsche Forschungsgemeinschaft, Grant JU 359/6 (Forschergruppe 518). The second author was supported partially by the Wissenschaftskolleg “Differential Equations”, funded by Fonds zur Förderung der wissenschaftlichen Forschung (FWF). The first author was supported in part by the FWF under the Special Research Center F003 “Optimization and Control”. This research is part of the ESF Program “Global and geometrical aspects of nonlinear partial differential equations (GLOBAL)”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Düring, B., Jüngel, A. & Volkwein, S. Sequential Quadratic Programming Method for Volatility Estimation in Option Pricing. J Optim Theory Appl 139, 515–540 (2008). https://doi.org/10.1007/s10957-008-9404-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-008-9404-4

Keywords

Navigation