Skip to main content
Log in

Solution Methods for Pseudomonotone Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We extend some results due to Thanh-Hao (Acta Math. Vietnam. 31: 283–289, [2006]) and Noor (J. Optim. Theory Appl. 115:447–452, [2002]). The first paper established a convergence theorem for the Tikhonov regularization method (TRM) applied to finite-dimensional pseudomonotone variational inequalities (VIs), answering in the affirmative an open question stated by Facchinei and Pang (Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, [2003]). The second paper discussed the application of the proximal point algorithm (PPA) to pseudomonotone VIs. In this paper, new facts on the convergence of TRM and PPA (both the exact and inexact versions of PPA) for pseudomonotone VIs in Hilbert spaces are obtained and a partial answer to a question stated in (Acta Math. Vietnam. 31:283–289, [2006]) is given. As a byproduct, we show that the convergence theorem for inexact PPA applied to infinite-dimensional monotone variational inequalities can be proved without using the theory of maximal monotone operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thanh-Hao, N.: Tikhonov regularization algorithm for pseudomonotone variational inequalities. Acta Math. Vietnam. 31, 283–289 (2006)

    MathSciNet  Google Scholar 

  2. Noor, M.A.: Proximal methods for mixed variational inequalities. J. Optim. Theory Appl. 115, 447–452 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I, II. Springer, New York (2003)

    Google Scholar 

  4. Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.): Handbook of Generalized Convexity and Generalized Monotonicity. Springer, New York (2005)

    MATH  Google Scholar 

  5. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 127–149 (1994)

    MathSciNet  Google Scholar 

  6. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  7. Aussel, D., Hadjisavvas, N.: On quasimonotone variational inequalities. J. Optim. Theory Appl. 121, 445–450 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crouzeix, J.-P.: Pseudomonotone varational inequality problems: existence of solutions. Math. Program. 78, 305–314 (1997)

    MathSciNet  Google Scholar 

  9. El Farouq, N.: Pseudomonotone variational inequalities: convergence of the auxiliary problem method. J. Optim. Theory Appl. 111, 305–326 (2001). Errata Corrige: 114, 477 (2002)

    Article  MathSciNet  Google Scholar 

  10. El Farouq, N.: Convergent algorithm based on progressive regularization for solving pseudomonotone variational inequalities. J. Optim. Theory Appl. 120, 455–485 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. El Farouq, N., Cohen, G.: Progressive regularization of variational inequalities and decomposition algorithms. J. Optim. Theory Appl. 97, 407–433 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119, 317–333 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Konnov, I.V., Ali, M.S.S., Mazurkevich, E.O.: Regulization for nonmonotone variational inequalities. Appl. Math. Optim. 53, 311–330 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Noor, M.A.: Proximal methods for mixed quasivariational inequalities. J. Optim. Theory Appl. 115, 453–459 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Noor, M.A.: Modified projection method for pseudomonotone variational inequalities. Appl. Math. Lett. 15, 315–320 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Noor, M.A.: Pseudomonotone general mixed variational inequalities. Appl. Math. Comput. 141, 529–540 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Noor, M.A.: Resolvent algorithms for mixed quasivariational inequalities. J. Optim. Theory Appl. 119, 137–149 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Noor, M.A.: Projection-proximal methods for general variational inequalities. J. Math. Anal. Appl. 318, 53–62 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yao, J.-C.: Multi-valued variational inequalities with K-pseudomonotone operators. J. Optim. Theory Appl. 80, 63–74 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kien, B.T., Yao, J.-C., Yen, N.D.: On the solution existence of pseudomonotone variational inequalities. Institute of Mathematics, Hanoi, E-Preprint 2006/10/01. J. Glob. Optim. 41, 135–145, 2008

    Google Scholar 

  21. Noor, M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122, 371–386 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zeng, L.-C., Lin, L.J., Yao, J.-C.: Auxiliary problem method for mixed variational-like inequalities. Taiwan. J. Math. 10, 497–513 (2006)

    MATH  MathSciNet  Google Scholar 

  23. Schaible, S., Yao, J.-C., Zeng, L.-C.: A proximal method for pseudomonotone type variational-like inequalities. Taiwan. J. Math. 10, 497–513 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Opér. 4, 154–158 (1970)

    MathSciNet  Google Scholar 

  25. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yen, N.D., Lee, G.M.: Some remarks on the elliptic regularization method. In: Cho, Y.J. (ed.) Fixed Point Theory and Applications, pp. 127–134. Nova Science Publishers, New York (2000)

    Google Scholar 

  27. Yao, J.-C., Chadli, O.: Pseudomonotone complementarity problems and variational inequalities. In: Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, pp. 501–558. Springer, New York (2005)

    Chapter  Google Scholar 

  28. Brezis, H.: Analyse Fonctionnelle, 2nd edn. Masson, Paris (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Yao.

Additional information

Communicated by F. Giannessi.

This research was supported in part by a grant from the National Sun Yat-Sen University, Kaohsiung, Taiwan. It has been carried out under the agreement between the National Sun Yat-Sen University, Kaohsiung, Taiwan and the University of Pisa, Pisa, Italy. The authors thank the anonymous referee for useful comments and suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, N.N., Yao, J.C. & Yen, N.D. Solution Methods for Pseudomonotone Variational Inequalities. J Optim Theory Appl 138, 253–273 (2008). https://doi.org/10.1007/s10957-008-9376-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-008-9376-4

Keywords

Navigation