Skip to main content
Log in

Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript


A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also shown that the discrete gradients can be applied to find descent directions of nonsmooth functions. The preliminary results of numerical experiments with unconstrained nonsmooth optimization problems as well as the comparison of the proposed method with the nonsmooth optimization solver DNLP from CONOPT-GAMS and the derivative-free optimization solver CONDOR are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 113, 117–156 (2002)

    Article  MathSciNet  Google Scholar 

  2. Gaudioso, M., Monaco, M.F.: A bundle type approach to the unconstrained minimization of convex nonsmooth functions. Math. Program. 23, 216–226 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms, vols. 1 and 2. Springer, Heidelberg (1993)

    Google Scholar 

  4. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics, vol. 1133. Springer, Berlin (1985)

    MATH  Google Scholar 

  5. Lemarechal, C.: An extension of Davidon methods to nondifferentiable problems. In: Balinski, M.L., Wolfe, P. (eds.) Nondifferentiable Optimization. Mathematical Programming Study, vol. 3, pp. 95–109. North-Holland, Amsterdam (1975)

    Google Scholar 

  6. Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2, 191–207 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zowe, J.: Nondifferentiable optimization: A motivation and a short introduction into the subgradient and the bundle concept. In: Schittkowski, K. (ed.) Computational Mathematical Programming. NATO SAI Series, vol. 15, pp. 323–356. Springer, New York (1985)

    Google Scholar 

  8. Wolfe, P.H.: A method of conjugate subgradients of minimizing nondifferentiable convex functions. Math. Program. Study 3, 145–173 (1975)

    MathSciNet  Google Scholar 

  9. Polak, E., Royset, J.O.: Algorithms for finite and semi-infinite min-max-min problems using adaptive smoothing techniques. J. Optim. Theory Appl. 119, 421–457 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15, 751–779 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Audet, C., Dennis, J.E. Jr.: Analysis of generalized pattern searches. SIAM J. Optim. 13, 889–903 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Torzcon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)

    Article  MathSciNet  Google Scholar 

  13. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  14. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 959–972 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main (1995)

    MATH  Google Scholar 

  16. Bagirov, A.M., Rubinov, A.M., Soukhoroukova, A.V., Yearwood, J.: Supervised and unsupervised data classification via nonsmooth and global optimisation. TOP: Spanish Oper. Res. J. 11, 1–93 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Bagirov, A.M., Yearwood, J.: A new nonsmooth optimisation algorithm for minimum sum-of-squares clustering problems. Eur. J. Oper. Res. 170, 578–596 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bagirov, A.M.: Minimization methods for one class of nonsmooth functions and calculation of semi-equilibrium prices. In: Eberhard, A., et al. (eds.) Progress in Optimization: Contribution from Australasia, pp. 147–175. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  19. Bagirov, A.M.: Continuous subdifferential approximations and their applications. J. Math. Sci. 115, 2567–2609 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wolfe, P.H.: Finding the nearest point in a polytope. Math. Program. 11, 128–149 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Frangioni, A.: Solving semidefinite quadratic problems within nonsmooth optimization algorithms. Comput. Oper. Res. 23, 1099–1118 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kiwiel, K.C.: A dual method for certain positive semidefinite quadratic programming problems. SIAM J. Sci. Stat. Comput. 10, 175–186 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Luks̃an, L., Vlc̃ek, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical Report 78, Institute of Computer Science, Academy of Sciences of the Czech Republic (2000)

  24. GAMS: The solver manuals. GAMS Development Corporation, Washington D.C. (2004)

  25. Bergen, F.V.: CONDOR: a constrained, non-linear, derivative-free parallel optimizer for continuous, high computing load, noisy objective functions. Ph.D. thesis, Université Libre de Bruxelles, Belgium (2004)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. M. Bagirov.

Additional information

Communicated by F. Giannessi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagirov, A.M., Karasözen, B. & Sezer, M. Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization. J Optim Theory Appl 137, 317–334 (2008).

Download citation

  • Published:

  • Issue Date:

  • DOI: