Skip to main content
Log in

On the Solution Existence of Generalized Quasivariational Inequalities with Discontinuous Multifunctions

Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Cite this article

Abstract

We study the following generalized quasivariational inequality problem: given a closed convex set X in a normed space E with the dual E *, a multifunction \(\Phi :X\rightarrow 2^{E^{*}}\) and a multifunction Γ:X→2X, find a point \((\hat{x},\hat{z})\in X\times E^{*}\) such that \(\hat{x}\in \Gamma(\hat{x}),\hat{z}\in \Phi (\hat{x}),\langle \hat{z},\hat{x}-y\rangle \leq 0\) , \(\forall y\in \Gamma(\hat{x})\) . We prove some existence theorems in which Φ may be discontinuous, X may be unbounded, and Γ is not assumed to be Hausdorff lower semicontinuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chan, D., Pang, J.S.: The generalized quasivariational inequality problem. Math. Oper. Res. 7, 211–222 (1982)

    MATH  MathSciNet  Google Scholar 

  2. Cubiotti, P.: Finite-dimensional quasivariational inequalities associated with discontinuous functions. J. Optim. Theory Appl. 72, 577–582 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cubiotti, P.: An existence theorem for generalized quasivariational inequalities. Set-Valued Anal. 1, 81–87 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cubiotti, P., Yen, N.D.: A result related to Ricceri’s conjecture on generalized quasivariational inequalities. Arch. Math. 69, 507–514 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cubiotti, P.: Generalized quasivariational inequalities without continuities. J. Optim. Theory Appl. 92, 477–495 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cubiotti, P.: On the discontinuous infinite-dimensional generalized quasivariational inequality problem. J. Optim. Theory Appl. 115, 97–111 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cubiotti, P.: Existence theorem for the discontinuous generalized quasivariational inequality problem. J. Optim. Theory Appl. 119, 623–633 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cubiotti, P., Yao, J.C.: Discontinuous implicit quasivariational inequalities with applications to fuzzy mappings. Math. Methods Oper. Res. 46, 213–328 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Yao, J.C., Guo, J.S.: Variational and generalized variational inequalities with discontinuous mappings. J. Math. Anal. Appl. 182, 371–382 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yao, J.C.: Generalized quasivariational inequality problems with discontinuous mappings. Math. Oper. Res. 20, 465–478 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yao, J.C., Guo, J.S.: Extension of strongly nonlinear quasivariational inequalities. Appl. Math. Lett. 5, 35–38 (1992)

    MATH  MathSciNet  Google Scholar 

  12. Yen, N.D.: On an existence theorem for generalized quasivariational inequalities. Set-Valued Anal. 3, 1–10 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Yen, N.D.: On a class of discontinuous vector-valued functions and the associated quasivariational inequalities. Optimization 30, 197–202 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ricceri, O.N.: On the covering dimension of the fixed-point set of certain multifunctions. Comment. Math. Univ. Carolinae 32, 281–286 (1991)

    MATH  Google Scholar 

  15. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Basel (1990)

    MATH  Google Scholar 

  16. Marano, S.A.: Controllability of partial differential inclusions depending on a parameter and distributed-parameter control processes. Le Matematiche 45, 283–300 (1960)

    MathSciNet  Google Scholar 

  17. Michael, E.: Continuous Selections I. In: Annals of Mathematics, vol. 63, pp. 361–382 (1956)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Yao.

Additional information

Communicated by X.Q. Yang.

The authors express their sincere gratitude to the referees for helpful suggestions and comments.

This research was partially supported by a grant from the National Science Council of Taiwan, ROC.

B.T. Kien was on leave from National University of Civil Engineering, Hanoi, Vietnam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kien, B.T., Wong, N.C. & Yao, J.C. On the Solution Existence of Generalized Quasivariational Inequalities with Discontinuous Multifunctions. J Optim Theory Appl 135, 515–530 (2007). https://doi.org/10.1007/s10957-007-9239-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-007-9239-4

Keywords

Navigation