Journal of Optimization Theory and Applications

, Volume 134, Issue 3, pp 433–443 | Cite as

On Optimization over the Efficient Set in Linear Multicriteria Programming

  • R. Horst
  • N. V. ThoaiEmail author
  • Y. Yamamoto
  • D. Zenke


The efficient set of a linear multicriteria programming problem can be represented by a reverse convex constraint of the form g(z)≤0, where g is a concave function. Consequently, the problem of optimizing some real function over the efficient set belongs to an important problem class of global optimization called reverse convex programming. Since the concave function used in the literature is only defined on some set containing the feasible set of the underlying multicriteria programming problem, most global optimization techniques for handling this kind of reverse convex constraint cannot be applied. The main purpose of our article is to present a method for overcoming this disadvantage. We construct a concave function which is finitely defined on the whole space and can be considered as an extension of the existing function. Different forms of the linear multicriteria programming problem are discussed, including the minimum maximal flow problem as an example.


Multicriteria optimization Optimization over the efficient set Global optimization Reverse convex constraint Minimum maximal flow problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Philip, J.: Algorithms for the vector maximization problem. Math. Program. 2, 207–229 (1972) zbMATHCrossRefGoogle Scholar
  2. 2.
    Benson, H.P.: Optimization over the efficient set. J. Math. Anal. Appl. 98, 562–580 (1984) zbMATHCrossRefGoogle Scholar
  3. 3.
    Benson, H.P.: An all-linear programming relaxation algorithm for optimizing over the efficient set. J. Glob. Optim. 1, 83–104 (1991) zbMATHCrossRefGoogle Scholar
  4. 4.
    Benson, H.B., Lee, D.: Outcome-based algorithm for optimizing over the efficient set of a bicriteria linear programming problem. J. Optim. Theory Appl. 88, 77–105 (1996) zbMATHCrossRefGoogle Scholar
  5. 5.
    Bolintineanu, S.: Minimization of a quasiconcave function over an efficient set. Math. Program. 61, 89–110 (1993) CrossRefGoogle Scholar
  6. 6.
    Dauer, J.P., Fosnaugh, T.A.: Optimization over the efficient set. J. Glob. Optim. 7, 261–277 (1995) zbMATHCrossRefGoogle Scholar
  7. 7.
    Le-Thi, H.A., Pham, D.T., Muu, L.D.: Numerical solution for optimization over the efficient set by D.C. optimization algorithms. Oper. Res. Lett. 19, 117–128 (1996) zbMATHCrossRefGoogle Scholar
  8. 8.
    Muu, L.D., Luc, L.T.: On equivalence between convex maximization and optimization over the efficient set. Vietnam J. Math. 24, 439–444 (1996) Google Scholar
  9. 9.
    Horst, R., Thoai, N.V.: Utility function programs and optimization over the efficient set in multiple objective decision making. J. Optim. Theory Appl. 92, 469–486 (1997) CrossRefGoogle Scholar
  10. 10.
    Horst, R., Thoai, N.V.: Maximizing a concave function over the efficient or weakly-efficient set. Eur. J. Oper. Res. 117, 239–252 (1999) zbMATHCrossRefGoogle Scholar
  11. 11.
    Thoai, N.V.: A class of optimization problems over the efficient set of a multiple criteria nonlinear programming problem. Eur. J. Oper. Res. 122, 58–68 (2000) zbMATHCrossRefGoogle Scholar
  12. 12.
    Thoai, N.V.: Conical algorithm in global optimization for optimizing over efficient sets. J. Glob. Optim. 18, 321–336 (2000) zbMATHCrossRefGoogle Scholar
  13. 13.
    Thoai, N.V.: Convergence and application of a decomposition method using duality bounds for nonconvex global optimization. J. Optim. Theory Appl. 113, 165–193 (2002) zbMATHCrossRefGoogle Scholar
  14. 14.
    Le-Thi, H.A., Pham, D.T., Thoai, N.V.: Combination between global and local methods for solving an optimization problem over the efficient set. Eur. J. Oper. Res. 142, 258–270 (2002) zbMATHCrossRefGoogle Scholar
  15. 15.
    Yamamoto, Y.: Optimization over the efficient set: overview. J. Glob. Optim. 22, 285–317 (2002) zbMATHCrossRefGoogle Scholar
  16. 16.
    Hillestad, R.J., Jacobsen, S.E.: Reverse Convex Programming. Appl. Math. Optim. 6, 63–78 (1980) zbMATHCrossRefGoogle Scholar
  17. 17.
    Thoai, N.V.: Canonical D.C. programming techniques for solving a convex program with an additional constrains of multiplicative type. Computing 50, 241–253 (1993) zbMATHCrossRefGoogle Scholar
  18. 18.
    Horst, R., Thoai, N.V.: Constraint decomposition algorithms in global optimization. J. Glob. Optim. 5, 333–348 (1994) zbMATHCrossRefGoogle Scholar
  19. 19.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996) zbMATHGoogle Scholar
  20. 20.
    Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, 2nd edn. Kluwer, Dordrecht (2000) zbMATHGoogle Scholar
  21. 21.
    Horst, R., Thoai, N.V.: D.C. programming: overview. J. Optim. Theory Appl. 103, 1–43 (1999) CrossRefGoogle Scholar
  22. 22.
    Yu, P.L.: Multiple Criteria Decision Making: Concepts, Techniques, and Extensions. Plenum, New York (1985) zbMATHGoogle Scholar
  23. 23.
    Shi, J., Yamamoto, Y.: A global optimization method for minimum maximal flow problem. Acta Math. Vietnam. 22, 271–287 (1997) zbMATHGoogle Scholar
  24. 24.
    Gotoh, J., Thoai, N.V., Yamamoto, Y.: Global optimization method for solving the minimum maximal flow problem. Optim. Methods Softw. 18, 395–415 (2003) zbMATHCrossRefGoogle Scholar
  25. 25.
    Shigeno, M., Takahashi, I., Yamamoto, Y.: Minimum maximal flow problem—an optimization over the efficient set. J. Glob. Optim. 25, 425–443 (2003) zbMATHCrossRefGoogle Scholar
  26. 26.
    Yamamoto, Y., Zenke, D.: Cut and split method for the minimum maximal flow problem. Pac. J. Optim. 1, 387–404 (2005) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TrierTrierGermany
  2. 2.Graduate School of Systems and Information EngineeringUniversity of TsukubaTsukubaJapan

Personalised recommendations