Advertisement

Journal of Optimization Theory and Applications

, Volume 127, Issue 3, pp 549–563 | Cite as

Projected Dynamical Systems and Evolutionary Variational Inequalities via Hilbert Spaces with Applications1

  • M. G. Cojocaru
  • P. Daniele
  • A. Nagurney
Article

Abstract

In this paper, we make explicit the connection between projected dynamical systems on Hilbert spaces and evolutionary variational inequalities. We give a novel formulation that unifies the underlying constraint sets for such inequalities, which arise in time-dependent traffic network, spatial price equilibrium, and a variety of financial equilibrium problems. We emphasize the importance of the results in applications and provide a traffic network numerical example in which we compute the curve of equilibria.

Keywords

Projected dynamical systems evolutionary variational inequalities traffic network equilibrium spatial price equilibrium financial equilibrium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dupuis, P., Nagurney, A. 1993Dynamical Systems and Variational InequalitiesAnnals of Operations Research44942CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Dupuis, P., Ishii, H. 1990On Lipschitz Continuity of the Solution Mapping to the Skorokhod Problem with ApplicationsStochastics and Stochastics Reports353162MathSciNetGoogle Scholar
  3. 3.
    Henry, C. 1973An Existence Theorem for a Class of Differential Equations with Multivalued Right-Hand SidesJournal of Mathematical Analysis and Applications41179186CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cornet, B. 1983Existence of Slow Solutions for a Class of Differential InclusionsJournal of Mathematical Analysis and Application96130147zbMATHMathSciNetGoogle Scholar
  5. 5.
    Aubin, J.P., Cellina, A. 1984Differential InclusionsSpringer VerlagBerlin, GermanyzbMATHGoogle Scholar
  6. 6.
    Hipfel, D. 1993The Nonlinear Differential Complementarity ProblemRensselaer Polytechnic InstituteTroy, New YorkPhD ThesisGoogle Scholar
  7. 7.
    Isac G., Cojocaru M.G., The Projection Operator in a Hilbert Space and Its Directional Derivative. Consequences for the Theory of Projected Dynamical Systems. Journal of Function Spaces and Applications (to appear)Google Scholar
  8. 8.
    Isac, G., Cojocaru, M.G. 2002Variational Inequalities, Complementarity Problems, and Pseudomonotonicity: Dynamical AspectsSeminar on Fixed-Point Theory, Babes-Bolyai University, Cluj-Napoca, Romania34162MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cojocaru M.G., (2005). Infinite-Dimensional Projected Dynamics and the 1-Dimensional Obstacle Problem to appear in Journal of Function Spaces and applications.Google Scholar
  10. 10.
    Cojocaru, M.G., Jonker, L.B. 2004Existence of Solutions to Projected Differential Equations in Hilbert SpaceProceedings of the American Mathematical Society132183193CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Nagurney, A. 1993Network Economics: A Variational Inequality ApproachKluwer Academic PublishersDordrecht, NetherlandszbMATHGoogle Scholar
  12. 12.
    Cournot, A.A. 1897Researches into the Mathematical Principles of the Theory of Wealth, 1838MacMillanLondon, England(in French); English TranslationGoogle Scholar
  13. 13.
    Enke, S. 1951Equilibrium among Spatially Separated Markets: Solution by Electronic AnalogueEconometrica104047Google Scholar
  14. 14.
    Samuelson, P.A. 1952Spatial Price Equilibrium and Linear ProgrammingAmerican Economic Review42283303Google Scholar
  15. 15.
    Takayama, T., Judge, G.G. 1971Spatial and Temporal Price and Allocation ModelsNorth-HollandAmsterdam, NetherlandsGoogle Scholar
  16. 16.
    Beckmann, M.J., McGuire, C.B., Winsten, C.B. 1956Studies in the Economics of TransportationYale University PressNew Haven, ConnecticutGoogle Scholar
  17. 17.
    Wardrop, J.G. 1952Some Theoretical Aspects of Road Traffic ResearchProceedings of the Institution of Civil Engineers1325378Part 2Google Scholar
  18. 18.
    Smith, M.J. 1979The Existence, Uniqueness, and Stability of Traffic EquilibriumTransportation Research38295304Google Scholar
  19. 19.
    Dafermos, S. 1980Traffic Equilibrium and Variational InequalitiesTransportation Science144254MathSciNetGoogle Scholar
  20. 20.
    Patriksson, M. 1994The Traffic Assignment Problem: Models and MethodsVSP BVUtrecht, NetherlandsGoogle Scholar
  21. 21.
    Nagurney, A., Zhang, D. 1995On the Stability of Projected Dynamical SystemsJournal of Optimization Theory and Applications8597124MathSciNetzbMATHGoogle Scholar
  22. 22.
    Nagurney, A., Zhang, D. 1996Projected Dynamical Systems and Variational Inequalities with ApplicationsKluwer Academic PublishersBoston, MassachusettsGoogle Scholar
  23. 23.
    Nagurney, A., Zhang, D. 1997Formulation, Stability, and Computation of Traffic Network Equilibria as Projected Dynamical SystemsJournal of Optimization Theory and Applications93417444MathSciNetzbMATHGoogle Scholar
  24. 24.
    Nagurney, A., Zhang, D. 1997Projected Dynamical Systems in the Formulation, Stability Analysis, and Computation of Fixed Demand Traffic Network EquilibriaTransportation Science31147158zbMATHGoogle Scholar
  25. 25.
    Nagurney, A., Dong, J., Zhang, D. 1996A Projected Dynamical Systems Model of General Financial Equilibrium with Stability AnalysisMathematical and Computer Modelling243544MathSciNetzbMATHGoogle Scholar
  26. 26.
    Nagurney, A., Siokos, S. 1997Financial Networks: Statics and DynamicsSpringer VerlagHeidelberg, GermanyGoogle Scholar
  27. 27.
    Nagurney, A., Ke, K. 2001Financial Networks with IntermediationQuantitative Finance1309317MathSciNetGoogle Scholar
  28. 28.
    Nagurney, A., Cruz, J. 2004Dynamics of International Financial Networks with Risk ManagementQuantitative Finance156194212MathSciNetzbMATHGoogle Scholar
  29. 29.
    Nagurney, A., Cruz, J., Matsypura, D. 2003Dynamics of Global Supply Chain SupernetworksMathematical and Computer Modelling37963983CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Nagurney, A., Dong, J., Zhang, D. 2002A Supply Chain Network Equilibrium ModelTransportation Research38E281303Google Scholar
  31. 31.
    Cojocaru, M.G. 2004Dynamics of Human MigrationPreprint, University of GuelphGuelph, Ontario, CanadaGoogle Scholar
  32. 32.
    Isac, G., Bulasky, V.A., Kalashnikov, V.V. 2002Complementarity, Equilibrium, Efficiency, and EconomicsKluwer Academic PublishersDordrecht, NetherlandszbMATHGoogle Scholar
  33. 33.
    Kinderlehrer, D., Stampacchia, G. 1980An Introduction to Variational Inequalities and Their ApplicationsAcademic PressNew York, NYzbMATHGoogle Scholar
  34. 34.
    Lions, J.L., Stampacchia, G. 1967Variational InequalitiesCommunications in Pure and Applied Mathematics22493519MathSciNetGoogle Scholar
  35. 35.
    Brezis, H. 1967Inequations d’Evolution AbstraitesComptes Rendus de l’Academie des SciencesParisGoogle Scholar
  36. 36.
    Steinbach, J. 1998On a Variational Inequality Containing a Memory Term with an Application in Electro-Chemical MachiningJournal of Convex Analysis56380zbMATHMathSciNetGoogle Scholar
  37. 37.
    Daniele, P., Maugeri, A., Oettli, W. 1998Variational Inequalities and Time-Dependent Traffic EquilibriaComptes Rendus de l’Academie des Sciences, Paris, Serie I32610591062MathSciNetzbMATHGoogle Scholar
  38. 38.
    Daniele, P., Maugeri, A., Oettli, W. 1999Time-Dependent Variational InequalitiesJournal of Optimization Theory and Applications104543555MathSciNetGoogle Scholar
  39. 39.
    Daniele, P., Maugeri, A. 2001On Dynamical Equilibrium Problems and Variational InequalitiesGiannessi, F.Maugeri, A.Pardalos, P.M. eds. Equilibrium Problems: Nonsmooth Optimization and Variational Inequality ModelsKluwer Academic PublishersDordrecht, Netherlands5969Google Scholar
  40. 40.
    Daniele, P. 2003Evolutionary Variational Inequalities and Economic Models for Demand Supply MarketsM3AS: Mathematical Models and Methods in Applied Sciences4471489zbMATHMathSciNetGoogle Scholar
  41. 41.
    Daniele P., Time-Dependent Spatial Price Equilibrium Problem: Existence and Stability Results for the Quantity Formulation Model. Journal of Global Optimization, 2002 (to appear)Google Scholar
  42. 42.
    Daniele, P. 2003Variational Inequalities for Evolutionary Financial EquilibriumNagurney, A. eds. Innovations in Financial and Economics NetworksEdward Elgar PublishingCheltenham, England84108Google Scholar
  43. 43.
    Scrimali, L. 2004Quasi-Variational Inequalities in Transportation NetworksMathematical Models and Methods, in Applied Sciences1415411560CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Bliemer, M.C.J., Bovy, P.H.L. 2003Quasivariational Inequality Formulation of the Multiclass Dynamic Traffic Assignment ProblemTransportation Research37501519Google Scholar
  45. 45.
    Ran, B., Boyce, D.E. 1996Modeling Dynamic Transportation Networks: An Intelligent System-Oriented Approach2Springer VerlagBerlin, GermanyzbMATHGoogle Scholar
  46. 46.
    Baiocchi, C., Capelo, A. 1984Variational and Quasivariational Inequalities: Applications to Free Boundary ProblemsJohn Wiley and SonsNew York, NYzbMATHGoogle Scholar
  47. 47.
    Gwinner, J. 2003Time-Dependent Variational Inequalities: Some Recent TrendsDaniele, P.Giannessi, F.Maugeri, A. eds. Equilibrium Problems and Variational ModelsKluwer Academic PublishersDordrecht, Netherlands225264Google Scholar
  48. 48.
    Raciti, F. 2004Equilibria Trajectories as Stationary Solutions of Infinite-Dimensional Projected Dynamical SystemsApplied Mathematics Letters17153158CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Raciti, F. 2003On the Calculation of Equilibrium in Time-Dependent Traffic NetworksDaniele, P.Giannessi, F.Maugeri, A. eds. Equilibrium Problems and Variational ModelsKluwer Academic PublisherDordrecht, NetherlandsGoogle Scholar
  50. 50.
    Stampacchia, G. 1969Variational Inequalities: Theory and Applications of Monotone OperatorsEdition OderisiGubbio, Italy101192Proceedings of the NATO Advanced Study Institute, Venice, Italy, 1968Google Scholar
  51. 51.
    Dafermos, S., Nagurney, A. 1984Sensitivity Analysis for the General Spatial Economic Equilibrium ProblemOperations Research3210691086MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. G. Cojocaru
    • 1
  • P. Daniele
    • 2
  • A. Nagurney
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of GuelphGuelphCanada
  2. 2.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly
  3. 3.Department of Finance and Operations ManagementUniversity of MassachusettsAmherst

Personalised recommendations