Skip to main content
Log in

Sufficient Optimality Criterion for Linearly Constrained, Separable Concave Minimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A sufficient optimality criterion for linearly-constrained concave minimization problems is given in this paper. Our optimality criterion is based on the sensitivity analysis of the relaxed linear programming problem. The main result is similar to that of Phillips and Rosen (Ref. 1); however, our proofs are simpler and constructive.

In the Phillips and Rosen paper (Ref. 1), they derived a sufficient optimality criterion for a slightly different linearly-constrained concave minimization problem using exponentially many linear programming problems. We introduce special test points and, using these for several cases, we are able to show optimality of the current basic solution.

The sufficient optimality criterion described in this paper can be used as a stopping criterion for branch-and-bound algorithms developed for linearly-constrained concave minimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Phillips J. B. Rosen (1993) ArticleTitle Sufficient Conditions for Solving Linearly Constrained Separable Concave Global Minimization Problems Journal of Global Optimization 3 79–94 1993 Occurrence Handle10.1007/BF01100241

    Article  Google Scholar 

  2. D. G. Luenberger (1973) Introduction to Linear and Nonlinear Programming Addison-Wesley Publishing Company Reading, Massachusetts

    Google Scholar 

  3. K. G. Murty S. N. Kabadi (1987) ArticleTitle Some NP-Complete Problems in Quadratic and Nonlinear Programming Mathematical Programming 39 117–129

    Google Scholar 

  4. P. Apkarian H. D. Tuan (1999) ArticleTitle Concave Programming in Control Theory Journal of Global Optimization 15 343–370 Occurrence Handle10.1023/A:1008385006172

    Article  Google Scholar 

  5. J. J. Moré S. A. Vavasis (1991) ArticleTitle On the Solution of Concave Knapsack Problems Mathematical Programming 49 397–411 Occurrence Handle10.1007/BF01588800

    Article  Google Scholar 

  6. T. Kuno T. Utsunomiya (2000) ArticleTitle Lagrangian-Based Branch-and-Bound Algorithm for Production-Transportation Problems Journal of Global Optimization 18 59–73 Occurrence Handle10.1023/A:1008373329033

    Article  Google Scholar 

  7. M. L. Liu N. V. Sahinidis J. P. Shectman (1996) Planning of Chemical Process Networks via Global Concave Minimization Kluwer Academic Publishers Dordrecht 195–230

    Google Scholar 

  8. F. Friedler L.T. Fan B. Imreh (1998) ArticleTitle Process Network Synthesis: Problem Definition Networks 31 119–124 Occurrence Handle10.1002/(SICI)1097-0037(199803)31:2<119::AID-NET6>3.0.CO;2-K

    Article  Google Scholar 

  9. Y. Yajima H. Konno (1999) ArticleTitleAn Algorithm for a Concave Production Cost Network Flow Problem Japan Journal of Industrial and Applied Mathematics 16 243–256

    Google Scholar 

  10. J. E. Falk R. M. Soland (1969) ArticleTitle An Algorithm for Separable Nonconvex Programming Problems Management Science 15 550–569

    Google Scholar 

  11. J. P. Shectman N. V. Sahinidis (1998) ArticleTitle A Finite Algorithm for Global Minimization of Separable Concave Programs Journal of Global Optimization 12 1–35 Occurrence Handle10.1023/A:1008241411395

    Article  Google Scholar 

  12. J. B. Rosen (1983) ArticleTitle Global Minimization of a Linearly Constrained Concave Function by Partition of Feasible Domain Mathematics of Operations Research 8 215–230

    Google Scholar 

  13. B. W. Lamar (1995) ArticleTitle Nonconvex Optimization over a Polytope Using Generalized Capacity Improvement Journal of Global Optimization 7 127–142 Occurrence Handle10.1007/BF01097058

    Article  Google Scholar 

  14. H. P. Benson (1990) ArticleTitle Separable Concave Minimization via Partial Outer Approximation and Branch and Bound Operations Research Letters 9 389–394 Occurrence Handle10.1016/0167-6377(90)90059-E

    Article  Google Scholar 

  15. A. V. Cabot S. S. Erenguc (1986) ArticleTitle A Branch-and-Bound Algorithm for Solving a Class of Nonlinear Integer Programming Problems Naval Research Logistics Quarterly 33 559–567

    Google Scholar 

  16. M. Locatelli N. V. Thoai (2000) ArticleTitleFinite Exact Branch-and-Bound Algorithms for Concave Minimization over Polytopes Journal of Global Optimization 18 107–128 Occurrence Handle10.1023/A:1008324430471

    Article  Google Scholar 

  17. H. P. Benson S. Sayin (1994) ArticleTitle A Finite Concave Minimization Algorithm Using Branch-and-Bound and Neighbor Generation Journal of Global Optimization 5 1–14 Occurrence Handle10.1007/BF01096999

    Article  Google Scholar 

  18. M. E. Dyer (1983) ArticleTitle The Complexity of Vertex Enumeration Methods Mathematics of Operations Research 8 381–402

    Google Scholar 

  19. M. E. Dyer L. G. Proll (1977) ArticleTitle An Algorithm for Determining all Extreme Points of a Convex Polytope Mathematical Programming 12 81–96 Occurrence Handle10.1007/BF01593771

    Article  Google Scholar 

  20. H. Tuy T. V. Thieu N. Q. Thai (1985) ArticleTitle A Conical Algorithm for Globally Minimizing a Concave Function over a Closed Convex Set Mathematics of Operations Research 10 498–514

    Google Scholar 

  21. K. M. Bretthauer A. V. Cabot (1994) ArticleTitle A Composite Branch-and-Bound, Cutting Plane Algorithm for Concave Minimization over a Polyhedron Computers and Operations Research 21 777–785 Occurrence Handle10.1016/0305-0548(94)90007-8

    Article  Google Scholar 

  22. K. L. Hoffman (1981) ArticleTitle A Method for Globally Minimizing Concave Functions over Convex Sets Mathematical Programming 20 22–32 Occurrence Handle10.1007/BF01589330

    Article  Google Scholar 

  23. S. Kontogiorgis (2000) ArticleTitle Practical Piecewise-Linear Approximation for Monotropic Optimization INFORMS Journal on Computing 12 324–340 Occurrence Handle10.1287/ijoc.12.4.324.11877

    Article  Google Scholar 

  24. Á Császár (1983) Real Analysis, I Tankönyvkiadó Budapest Hungary

    Google Scholar 

  25. M. S. Bazaraa H. D. Sherali C. M. Shetty (1993) Nonlinear Programming: Theory and Algorithms John Wiley and Sons New York NY

    Google Scholar 

  26. M. Kovács (1997) Theory of Nonlinear Programming Typotex Budapest, Hungary

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a Bolyai János Research Fellowship BO/00334/00 of the Hungarian Academy of Science and by the Hungarian Scientific Research Foundation, Grant OTKA T038027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illés, T., Nagy, Á.B. Sufficient Optimality Criterion for Linearly Constrained, Separable Concave Minimization Problems. J Optim Theory Appl 125, 559–575 (2005). https://doi.org/10.1007/s10957-005-2089-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-005-2089-z

Keywords

Navigation