Skip to main content

Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

Abstract

Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students’ spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display technologies and their associated assessments for anatomical education. In the first segment, the review covers the general function of displays employing 3D techniques. The second segment of the review highlights the use and assessment of 3D technology in anatomical education, focusing on factors such as knowledge gains, student perceptions, and cognitive load. The review found 32 articles on the use of 3D displays in anatomical education and another 38 articles on the assessment of 3D displays. The review shows that the majority (74 %) of studies indicate that the use of 3D is beneficial for many tasks in anatomical education, and that student perceptions are positive toward the technology.

This is a preview of subscription content, access via your institution.

References

  1. Abildgaard A, Witwit AK, Karlsen JS, Jacobsen EA, Tennøe B, Ringstad G, Due-Tønnessen P (2010) An autostereoscopic 3D display can improve visualization of 3D models from intracranial MR angiography. Int J Comput Assist Radiol Surg 5(5):549–554. doi:10.1007/s11548-010-0509-5

    Article  Google Scholar 

  2. Al-Khalili SM, Coppoc GL (2014) 2D and 3D stereoscopic videos used as pre-anatomy lab tools improve students’ examination performance in a veterinary gross anatomy course. J Vet Med Educ 41(1):68–76. doi:10.3138/jvme.0613-082R

    Article  Google Scholar 

  3. Balogh A, Preul MC, Schornak M, Hickman M, Spetzler RF (2004) Intraoperative stereoscopic QuickTime Virtual Reality. J Neurosurg 100(4):591–596. doi:10.3171/jns.2004.100.4.0591

    Article  Google Scholar 

  4. Battulga B, Konishi T, Tamura Y, Moriguchi H (2012) The effectiveness of an interactive 3-dimensional computer graphics model for medical education. Interact J Med Res 1(2):e2. doi:10.2196/ijmr.2172

    Article  Google Scholar 

  5. Beermann J, Tetzlaff R, Bruckner T, Schoebinger M, Muller-Stich BP, Gutt CN, Fischer L (2010) Three-dimensional visualisation improves understanding of surgical liver anatomy. Med Educ 44(9):936–940. doi:10.1111/j.1365-2923.2010.03742.x

    Article  Google Scholar 

  6. Berryman DR (2012) Augmented reality: a review. Med Ref Serv Q 31(2):212–218. doi:10.1080/02763869.2012.670604

    Article  Google Scholar 

  7. Blum T, Kleeberger V, Bichlmeier C, Navab N (2012) Mirracle: an augmented reality magic mirror system for anatomy education. Virtual reality short papers and posters (VRW), 2012 IEEE, pp 115–116. doi:10.1109/VR.2012.6180909

  8. Brenton H, Hernandez J, Bello F, Strutton P, Purkayastha S, Firth T, Darzi A (2007) Using multimedia and Web3D to enhance anatomy teaching. Comput Educ 49(1):32–53. doi:10.1016/j.compedu.2005.06.005

    Article  Google Scholar 

  9. Brown PM, Hamilton NM, Denison AR (2012) A novel 3D stereoscopic anatomy tutorial. Clin Teach 9(1):50–53. doi:10.1111/j.1743-498X.2011.00488.x

    Article  Google Scholar 

  10. Chien C-H, Chen C-H, Jeng T-S (2010) An interactive augmented reality system for learning anatomy structure. Paper presented at the proceedings of the international multiconference of engineers and computer scientists

  11. Christopher LA, William A, Cohen-Gadol AA (2013) Future directions in 3-dimensional imaging and neurosurgery: stereoscopy and autostereoscopy. Neurosurgery 72:A131–A138. doi:10.1227/NEU.0b013e318270d9c0

    Article  Google Scholar 

  12. Chu JCH, Gong X, Cai Y, Kirk MC, Zusag TW, Shott S, Abrams RA (2009) Application of holographic display in radiotherapy treatment planning II: a multi-institutional study. J Appl Clin Med Phys 10(3):115–124. doi:10.1120/jacmp.v10i3.2902

    Article  Google Scholar 

  13. Codd AM, Choudhury B (2011) Virtual Reality Anatomy: is it comparable with traditional methods in the teaching of human forearm musculoskeletal anatomy? Anat Sci Educ 4(3):119–125. doi:10.1002/ase.214

    Article  Google Scholar 

  14. Copolo CE, Hounshell PB (1995) Using three-dimensional models to teach molecular structures in high school chemistry. J Sci Educ Technol 4(4):295–305. doi:10.1007/bf02211261

    Article  Google Scholar 

  15. Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q 13(3):319–340. doi:10.2307/249008

    Article  Google Scholar 

  16. Davis FD, Bagozzi RP, Warshaw PR (1989) User acceptance of computer technology: a comparison of two theoretical models. Manage Sci 35(8):982–1003. doi:10.1287/mnsc.35.8.982

    Article  Google Scholar 

  17. Davis L, Hamza-Lup FG, Daly J, Ha Y, Frolich S, Meyer C, Rolland JP (2002) Application of augmented reality to visualizing anatomical airways. Paper presented at the head-mounted displays VII

  18. Dodgson NA (2005) Autostereoscopic 3D displays. Computer. doi:10.1109/MC.2005.252

    Google Scholar 

  19. Engelhart MD (1932) Physical and biological sciences. Rev Educ Res 2(1):21–28. doi:10.3102/00346543002001021

    Article  Google Scholar 

  20. Estevez ME, Lindgren KA, Bergethon PR (2010) A novel three-dimensional tool for teaching human neuroanatomy. Anat Sci Educ 3(6):309–317. doi:10.1002/ase.186

    Article  Google Scholar 

  21. Favalora GE (2005) Volumetric 3D displays and application infrastructure. Computer. doi:10.1109/mc.2005.276

    Google Scholar 

  22. Ferrer-Torregrosa J, Torralba J, Jimenez MA, García S, Barcia JM (2014) ARBOOK: development and assessment of a tool based on augmented reality for anatomy. J Sci Educ Technol 24(1):119–124. doi:10.1007/s10956-014-9526-4

    Article  Google Scholar 

  23. Fitzgerald JEF, White MJ, Tang SW, Maxwell-Armstrong CA, James DK (2008) Are we teaching sufficient anatomy at medical school? The opinions of newly qualified doctors. Clin Anat 21(7):718–724. doi:10.1002/ca.20662

    Article  Google Scholar 

  24. Foo JL, Martinez-Escobar M, Juhnke B, Cassidy K, Hisley K, Lobe T, Winer E (2013) Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization. J Laparoendosc Adv Surg Tech 23(1):65–70. doi:10.1089/lap.2012.0150

    Article  Google Scholar 

  25. Frasca D, Malezieux R, Mertens P, Neidhardt JP, Voiglio EJ (2000) Review and evaluation of anatomy sites on the Internet (updated 1999). Surg Radiol Anat 22(2):107–110. doi:10.1007/s00276-000-0107-2

    Article  Google Scholar 

  26. Friedl R, Preisack MB, Klas W, Rose T, Stracke S, Quast KJ, Godje O (2002) Virtual reality and 3D visualizations in heart surgery education. Heart Surg Forum 5(3):E17–E21

    Google Scholar 

  27. Gallo L, Ciampi M (2009) Wii Remote-enhanced hand-computer interaction for 3D medical image analysis. Proc Curr Trends Inf Technol. doi:10.1109/CTIT.2009.5423137

    Google Scholar 

  28. Gallo L, De Pietro G, Coronato A, Marra I (2008) Toward a natural interface to virtual medical imaging environments. Proc Work Conf Adv Vis Interfaces. doi:10.1145/1385569.1385651

    Google Scholar 

  29. Garg A, Norman GR, Spero L, Maheshwari P (1999a) Do virtual computer models hinder anatomy learning? Acad Med 74(10):S87–S89

    Article  Google Scholar 

  30. Garg A, Norman G, Spero L, Taylor I (1999b) Learning anatomy: do new computer models improve spatial understanding? Med Teach 21(5):519–522. doi:10.1080/01421599979239

    Article  Google Scholar 

  31. Garg AX, Norman G, Sperotable L (2001) How medical students learn spatial anatomy. Lancet 357(9253):363–364. doi:10.1016/S0140-6736(00)03649-7

    Article  Google Scholar 

  32. Gately M, Zhai Y, Yeary M, Petrich E, Sawalha L (2011) A three-dimensional swept volume display based on LED arrays. J Disp Technol 7(9):503–514. doi:10.1109/JDT.2011.2157455

    Article  Google Scholar 

  33. Geng J (2013) Three-dimensional display technologies. Adv Opt Photonics 5(4):456–535. doi:10.1364/AOP.5.000456

    Article  Google Scholar 

  34. Gorman PJ, Meier AH, Rawn C, Krummel TM (2000) The future of medical education is no longer blood and guts, it is bits and bytes. Am J Surg 180(5):353–356. doi:10.1016/s0002-9610(00)00514-6

    Article  Google Scholar 

  35. Hackett M (2013) Medical holography for basic anatomy training. Paper presented at the interservice/industry training, simulation & education conference

  36. Hackett M, Fefferman K (2014) Comparative analysis of holographic display and three-dimensional television. Paper presented at the interservice/industry training, simulation & education conference

  37. Hall GE, Loucks SF, Rutherford WL, Newlove BW (1975) Levels of use of the innovation: a framework for analyzing innovation adoption. J Teach Educ 26(1):52–56. doi:10.1177/002248717502600114

    Article  Google Scholar 

  38. Halle M (2005) Autostereoscopic displays and computer graphics. Paper presented at the ACM SIGGRAPH 2005

  39. Hariri S, Rawn C, Srivastava S, Youngblood P, Ladd A (2004) Evaluation of a surgical simulator for learning clinical anatomy. Med Educ 38(8):896–902. doi:10.1111/j.1365-2929.2004.01897.x

    Article  Google Scholar 

  40. Hilbelink AJ (2009) A measure of the effectiveness of incorporating 3D human anatomy into an online undergraduate laboratory. Br J Educ Technol 40(4):664–672. doi:10.1111/j.1467-8535.2008.00886.x

    Article  Google Scholar 

  41. Hoffman HM, Murray M, Irwin AE, McCracken T (1996) Developing a virtual reality-multimedia system for anatomy training. Stud Health Technol Inform. doi:10.3233/978-1-60750-873-1-204

    Google Scholar 

  42. Hong J, Kim Y, Choi H-J, Hahn J, Park J-H, Kim H, Lee B (2011) Three-dimensional display technologies of recent interest: principles, status, and issues [Invited]. Appl Opt 50(34):H87–H115. doi:10.1364/AO.50.000H87

    Article  Google Scholar 

  43. Hoyek N, Collet C, Di Rienzo F, De Almeida M, Guillot A (2014) Effectiveness of three-dimensional digital animation in teaching human anatomy in an authentic classroom context. Anat Sci Educ 7(6):430–437. doi:10.1002/ase.1446

    Article  Google Scholar 

  44. Hu A, Wilson T, Ladak H, Haase P, Doyle P, Fung K (2010) Evaluation of a three-dimensional educational computer model of the larynx: voicing a new direction. J Otolaryngol Head Neck Surgery 39(3):315–322. doi:10.2310/7070.2010.090074

    Google Scholar 

  45. Huang H-M, Liaw S-S, Lai C-M (2013) Exploring learner acceptance of the use of virtual reality in medical education: a case study of desktop and projection-based display systems. Interact Learn Environ. doi:10.1080/10494820.2013.817436

    Google Scholar 

  46. Ilgner JFR, Kawai T, ShibataT, Yamazoe T, Westhofen M (2006) Evaluation of stereoscopic medical video content on an autostereoscopic display for undergraduate medical education. Paper presented at the proceedings SPIE stereoscopic displays and virtual reality systems XIII

  47. Inoue T, Ohzu H (1997) Accommodative responses to stereoscopic three-dimensional display. Appl Opt 36(19):4509–4515. doi:10.1364/AO.36.004509

    Article  Google Scholar 

  48. Jaffar AA (2012) YouTube: an emerging tool in anatomy education. Anat Sci Educ 5(3):158–164. doi:10.1002/ase.1268

    Article  Google Scholar 

  49. Jones A, McDowall I, Yamada H, Bolas M, Debevec P (2007) Rendering for an interactive 360 light field display. ACM Trans Graph 26(3):40. doi:10.1145/1276377.1276427

    Article  Google Scholar 

  50. Juanes JA, Hernández D, Ruisoto P, García E, Villarrubia G, Prats A (2014) Augmented reality techniques, using mobile devices, for learning human anatomy. Paper presented at the proceedings of the 2nd international conference on technological ecosystems for enhancing multiculturality

  51. Jurgaitis J, Paskonis M, Pivoriunas J, Martinaityte I, Juska A, Jurgaitiene R, Schemmer P (2008) The comparison of 2-dimensional with 3-dimensional hepatic visualization in the clinical hepatic anatomy education. Medicina (Kaunas) 44(6):428–438

    Google Scholar 

  52. Kamphuis C, Barsom E, Schijven M, Christoph N (2014) Augmented reality in medical education? Perspect Med Educ 3(4):300–311. doi:10.1007/s40037-013-0107-7

    Article  Google Scholar 

  53. KancherlaAR, Rolland JP, Wright DL, Burdea G (1995) A novel virtual reality tool for teaching dynamic 3D anatomy. Paper presented at the computer vision, virtual reality and robotics in medicine

  54. Keedy AW, Durack JC, Sandhu P, Chen EM, O’Sullivan PS, Breiman RS (2011) Comparison of traditional methods with 3D computer models in the instruction of hepatobiliary anatomy. Anat Sci Educ 4(2):84–91. doi:10.1002/ase.212

    Article  Google Scholar 

  55. Khalil MK, Paas F, Johnson TE, Payer AF (2005) Interactive and dynamic visualizations in teaching and learning of anatomy: a cognitive load perspective. Anat Record B New Anat 286(1):8–14. doi:10.1002/ar.b.20077

    Article  Google Scholar 

  56. Khan J (2014) BIOMEDICAL IMAGING: 3D digital holograms visualize biomedical applications. Retrieved from laser focus world website: http://www.laserfocusworld.com/index.html

  57. Khan J, Can C, Greenaway A, Underwood I (2013) A real-space interactive holographic display based on a large-aperture HOE. Paper presented at the SPIE OPTO

  58. Klug MA, Holzbach ME (2003) US patent no. 6,665,100. U. S. P. a. T. Office

  59. Klug M, Burnett T, Fancello A, Heath A, Gardner K, O’Connell S, Newswanger C (2013) 32.4: A scalable, collaborative, interactive light‐field display system. Paper presented at the SID symposium

  60. Kockro RA, Hwang PY (2009) Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery. Neurosurgery 64(5 Suppl 2), 216–229; discussion 229–230. doi:10.1227/01.neu.0000343744.46080.91

  61. Kockro RA, Amaxopoulou C, Killeen T, Wagner W, Reisch R, Schwandt E, Stadie AT (2015) Stereoscopic neuroanatomy lectures using a three-dimensional virtual reality environment. Ann Anatomy Anat Anz 201:91–98. doi:10.1016/j.aanat.2015.05.006

    Article  Google Scholar 

  62. Kooi FL, Toet A (2004) Visual comfort of binocular and 3D displays. Displays 25(2–3):99–108. doi:10.1016/j.displa.2004.07.004

    Article  Google Scholar 

  63. Lee SW-Y, Tsai C-C (2012) Technology-supported learning in secondary and undergraduate biological education: observations from literature review. J Sci Educ Technol 22(2):226–233. doi:10.1007/s10956-012-9388-6

    Article  Google Scholar 

  64. Leung H, Lee H, Mark K, Lui KM (2012) Unlocking the secret of 3D content for education. Paper presented at the teaching, assessment and learning for engineering (TALE) 2012

  65. Lewin S (2014) Holographic displays coming to smartphones [News]. Spectrum IEEE 51(8):13–14. doi:10.1109/MSPEC.2014.6866424

    Article  Google Scholar 

  66. Lewis T, Burnett B, Tunstall R, Abrahams P (2014) Complementing anatomy education using three-dimensional anatomy mobile software applications on tablet computers. Clin Anat 27(3):313–320. doi:10.1002/ca.22256

    Article  Google Scholar 

  67. Li Q, Ran X, Zhang S, Tan L, Qiu M (2014) A digital interactive human brain atlas based on chinese visible human datasets for anatomy teaching. J Craniofac Surg 25(1):303–307. doi:10.1097/SCS.0b013e3182a4c54a

    Article  Google Scholar 

  68. Liu K, Fang B, Wu Y, Li Y, Jin J, Tan L, Zhang S (2013) Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region. Anat Sci Int 88(4):254–258. doi:10.1007/s12565-013-0186-x

    Article  Google Scholar 

  69. Luursema J-M, Verwey WB, Kommers PAM, Geelkerken RH, Vos HJ (2006) Optimizing conditions for computer-assisted anatomical learning. Interact Comput 18(5):1123–1138. doi:10.1016/j.intcom.2006.01.005

    Article  Google Scholar 

  70. Luursema J-M, Verwey WB, Kommers PAM, Annema J-H (2008) The role of stereopsis in virtual anatomical learning. Interact Comput 20(4–5):455–460. doi:10.1016/j.intcom.2008.04.003

    Article  Google Scholar 

  71. Mayer RE (2009) Multimedia learning. Cambridge University Press

  72. McCracken H (2015) Oculus rift Vs. HoloLens: will the digital-reality revolution be virtual or augmented? http://www.fastcompany.com/3048633/facebook-vs-microsoft-will-the-digital-reality-revolution-be-virtual-or-augmented

  73. McIntire JP, Havig PR, Geiselman EE (2012) What is 3D good for? A review of human performance on stereoscopic 3D displays. Paper presented at the SPIE defense, security, and sensing

  74. Meng M, Fallavollita P, Blum T, Eck U, Sandor C, Weidert S, Navab N (2013) Kinect for interactive AR anatomy learning. Paper presented at the 2013 IEEE international symposium on mixed and augmented reality (ISMAR)

  75. Metzler R, Stein D, Tetzlaff R, Bruckner T, Meinzer HP, Buchler MW, Fischer L (2012) Teaching on three-dimensional presentation does not improve the understanding of according CT images: a randomized controlled study. Teach Learn Med 24(2):140–148. doi:10.1080/10401334.2012.664963

    Article  Google Scholar 

  76. Muller-Stich BP, Lob N, Wald D, Bruckner T, Meinzer HP, Kadmon M, Fischer L (2013) Regular three-dimensional presentations improve in the identification of surgical liver anatomy—a randomized study. BMC Med Educ 13:131. doi:10.1186/1472-6920-13-131

    Article  Google Scholar 

  77. Nicholson DT, Chalk C, Funnell WRJ, Daniel SJ (2006) Can virtual reality improve anatomy education? A randomised controlled study of a computer-generated three-dimensional anatomical ear model. Med Educ 40(11):1081–1087. doi:10.1111/j.1365-2929.2006.02611.x

    Article  Google Scholar 

  78. Nieder GL, Scott JN, Anderson MD (2000) Using QuickTime virtual reality objects in computer-assisted instruction of gross anatomy: yorick—the VR Skull. Clin Anat 13(4):287–293. doi:10.1002/1098-2353(2000)13:4<287:AID-CA9>3.0.CO;2-L

    Article  Google Scholar 

  79. Nieder GL, Nagy F, Pearson JC, Wagner LA (2002) QuickTime VR anatomical resource: a library of virtual anatomical objects for gross anatomy educators. Paper presented at the 6th annual meeting of the international association of medical science educators

  80. Nobuoka D, Fuji T, Yoshida K, Takagi K, Kuise T, Utsumi M, Ohtsuka A (2014) Surgical education using a multi-viewpoint and multi-layer three-dimensional atlas of surgical anatomy. J Hepato-Biliary-Pancreat Sci 21(8):556–561. doi:10.1002/jhbp.108

    Article  Google Scholar 

  81. Noguera JM, Jimenez JJ, Osuna-Perez MC (2013) Development and evaluation of a 3D mobile application for learning manual therapy in the physiotherapy laboratory. Comput Educ 69:96–108. doi:10.1016/j.compedu.2013.07.007

    Article  Google Scholar 

  82. Park JS, Chung MS, Hwang SB, Lee YS, Har D-H, Park HS (2005) Visible Korean human: improved serially sectioned images of the entire body. IEEE Trans Med Imag 24(3):352–360. doi:10.1109/TMI.2004.842454

    Article  Google Scholar 

  83. Pastoor S, Wöpking M (1997) 3-D displays: a review of current technologies. Displays 17(2):100–110. doi:10.1016/S0141-9382(96)01040-2

    Article  Google Scholar 

  84. Petersson H, Sinkvist D, Wang CL, Smedby O (2009) Web-based interactive 3D visualization as a tool for improved anatomy learning. Anat Sci Educ 2(2):61–68. doi:10.1002/ase.76

    Article  Google Scholar 

  85. Pfautz JD (2000) Depth perception in computer graphics. University of Cambridge, Cambridge

  86. Portoni L, Patak A, Noirard P, Grossetie J-C, van Berkel C (2000) Real-time auto-stereoscopic visualization of 3D medical images. Paper presented at the medical imaging 2000

  87. Qualter J, Sculli F, Oliker A, Napier Z, Lee S, Garcia J, Triola M (2011) The biodigital human: a web-based 3D platform for medical visualization and education. Stud Health Technol Inf 173:359–361. doi:10.3233/978-1-61499-022-2-359

    Google Scholar 

  88. Rasimah CMY, Ahmad A, Zaman HB (2011) Evaluation of user acceptance of mixed reality technology. Aust J Educ Technol 27(8), 1369–1387. http://ajet.org.au

  89. Reichelt S, Häussler R, Fütterer G, Leister N, Kato H, Usukura N, Kanbayashi Y (2012) Full-range, complex spatial light modulator for real-time holography. Opt Lett 37(11):1955–1957. doi:10.1364/OL.37.001955

    Article  Google Scholar 

  90. Rogers EM, Shoemaker FF (1971) Communication of innovations; a cross-cultural approach. The Free Press, 866 Third avenue, New York, N. Y. 10022

  91. Rolland J, Wright D, Kancherla A (1997) Towards a novel augmented-reality tool to visualize dynamic 3-D anatomy. Stud Health Technol Inf. doi:10.3233/978-1-60750-883-0-337

    Google Scholar 

  92. Rolland J, Davis L, Hamza-Lup F, Daly J, Ha Y, Martin G, Imielinska C (2003) Development of a training tool for endotracheal intubation: distributed augmented reality. Stud Health Technol Inf. doi:10.7916/D8CJ8C10

    Google Scholar 

  93. Ruisoto Palomera P, Juanes Méndez JA, Prats Galino A (2014) Enhancing neuroanatomy education using computer-based instructional material. Comput Hum Behav 31:446–452. doi:10.1016/j.chb.2013.03.005

    Article  Google Scholar 

  94. Ruisoto P, Juanes JA, Contador I, Mayoral P, Prats-Galino A (2012) Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models. Anat Sci Edu 5(3):132–137. doi:10.1002/ase.1275

    Article  Google Scholar 

  95. Satava RM, Jones SB (1998) Current and future applications of virtual reality for medicine. Proc IEEE 86(3):484–489. doi:10.1109/5.662873

    Article  Google Scholar 

  96. Schiemann T, Freudenberg J, Pflesser B, Pommert A, Priesmeyer K, Riemer M, Höhne KH (2000) Exploring the visible human using the VOXEL-MAN framework. Comput Med Imag Graph 24(3):127–132. doi:10.1016/S0895-6111(00)00013-6

    Article  Google Scholar 

  97. Sergovich A, Johnson M, Wilson TD (2010) Explorable three-dimensional digital model of the female pelvis, pelvic contents, and perineum for anatomical education. Anat Sci Educ 3(3):127–133. doi:10.1002/ase.135

    Google Scholar 

  98. Settapat S, Achalakul T, Ohkura M (2014) Web-based 3D medical image visualization framework for biomedical engineering education. Comput Appl Eng Educ 22(2):216–226. doi:10.1002/cae.20548

    Article  Google Scholar 

  99. Sherman WR, Craig AB (2002) Understanding virtual reality: Interface, application, and design. Elsevier, San Francisco, CA

    Google Scholar 

  100. Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. J Am Med Inform Assoc 3(2):118–130. doi:10.1136/jamia.1996.96236280

    Article  Google Scholar 

  101. Straub ET (2009) Understanding technology adoption: theory and future directions for informal learning. Rev Educ Res 79(2):625–649. doi:10.3102/0034654308325896

    Article  Google Scholar 

  102. Sulaiman R (2014) Visualization cardiac human anatomy using augmented reality mobile application. IJECCE 5(3):497–501

    Google Scholar 

  103. Sweller J (1994) Cognitive load theory, learning difficulty, and instructional design. Learn Instr 4(4):295–312. doi:10.1016/0959-4752(94)90003-5

    Article  Google Scholar 

  104. Tan S, Hu A, Wilson T, Ladak H, Haase P, Fung K (2012) Role of a computer-generated three-dimensional laryngeal model in anatomy teaching for advanced learners. J Laryngol Otol 126(04):395–401. doi:10.1017/S0022215111002830

    Article  Google Scholar 

  105. Teng DD, Pang ZY, Liu LL, Wang BA (2014) Displaying three-dimensional medical objects by holographical technique. Opt Eng 53(11):6. doi:10.1117/1.oe.53.11.112304

    Article  Google Scholar 

  106. Thomas KJ, Denham BE, Dinolfo JD (2011) Perceptions among occupational and physical therapy students of a nontraditional methodology for teaching laboratory gross anatomy. Anat Sci Educ 4(2):71–77. doi:10.1002/ase.208

    Article  Google Scholar 

  107. Tourancheau S, Sjöström M, Olsson R, Persson A, Ericson T, Rudling J, Norén B (2012). Subjective evaluation of user experience in interactive 3D visualization in a medical context. Paper presented at the medical imaging 2012: image perception, observer performance, and technology assessment

  108. Trelease RB (1998) The virtual anatomy practical: a stereoscopic 3D interactive multimedia computer examination program. Clin Anat 11(2):89–94. doi:10.1002/(SICI)1098-2353(1998)11:2<89:AID

    Article  Google Scholar 

  109. Van Dam A, Feiner SK (2014) Computer graphics: principles and practice: Pearson education

  110. Venkatesh V, Davis FD (2000) A theoretical extension of the technology acceptance model: four longitudinal field studies. Manage Sci 46(2):186–204. doi:10.1287/mnsc.46.2.186.11926

    Article  Google Scholar 

  111. Wong W, Tay S (2005) The teaching of Anatomy: the first hundred years (1905–2005). Ann Acad Med Singapore 34:72C–78C

    Google Scholar 

  112. Wouters P, Paas F, van Merriënboer JJG (2008) How to optimize learning from animated models: a review of guidelines based on cognitive load. Rev Educ Res 78(3):645–675. doi:10.3102/0034654308320320

    Article  Google Scholar 

  113. Yammine K, Violato C (2014) A meta-analysis of the educational effectiveness of three-dimensional visualization technologies in teaching anatomy. Anat Sci Educ. doi:10.1002/ase.1510

    Google Scholar 

  114. Yao WC, Regone RM, Huyhn N, Butler EB, Takashima M (2014) Three-dimensional sinus imaging as an adjunct to two-dimensional imaging to accelerate education and improve spatial orientation. Laryngoscope 124(3):596–601. doi:10.1002/lary.24316

    Article  Google Scholar 

  115. Yeom S, Choi-Lundberg D, Fluck A, Sale A (2013) User acceptance of a haptic interface for learning anatomy. Paper presented at the international conference on e-learning

  116. Yeung JC, Fung K, Wilson TD (2012) Prospective evaluation of a web-based three-dimensional cranial nerve simulation. J Otolaryngol Head Neck Surg 41:426–436. doi:10.2310/7070.2012.00049

    Google Scholar 

  117. Zariwny A, Stewart P, Dryer M (2014) Visuo-haptic learning of the inner ear: using the optical glyphs and augmented reality of the InvisibleEar©™. ACM SIGCAS Comput Soc 44(2):5–7. doi:10.1145/2656870.2656871

    Article  Google Scholar 

  118. Zhang SX, Heng PA, Liu ZJ (2006) Chinese visible human project. Clin Anat 19(3):204–215. doi:10.1002/ca.20273

    Article  Google Scholar 

  119. Zhu E, Hadadgar A, Masiello I, Zary N (2014a) Augmented reality in healthcare education: an integrative. Review. doi:10.7717/peerj.469

    Google Scholar 

  120. Zhu H, Wang W, Sun J, Meng Q, Yu J, Qin J, Heng P-A (2014b) An interactive web-based navigation system for learning human anatomy. Adv Technol Embed Multimedia Human Centric Comput. doi:10.1007/978-94-007-7262-5_9

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew Hackett.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hackett, M., Proctor, M. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review. J Sci Educ Technol 25, 641–654 (2016). https://doi.org/10.1007/s10956-016-9619-3

Download citation

Keywords

  • Anatomy
  • Education
  • Three-dimensional
  • Visualization
  • Display