Aitsiselmi Y, Holliman NS (2009) Using mental rotation to evaluate the benefits of stereoscopic displays. In: IS&T/SPIE electronic imaging. International Society for Optics and Photonics, pp 72370Q–72370Q
Apley A, Streitburger K, Scala J (2008) Dinosaurs alive: film summative report submitted to Maryland Science Center. RMC Research Corporation, Portsmouth
Google Scholar
Barfield W, Rosenberg C (1995) Judgments of azimuth and elevation as a function of monoscopic and binocular depth cues using a perspective display. Human Factors J Human Factors Ergonom Soc 37(1):173–181
Article
Google Scholar
Bodner GM, Guay RB (1997) The Purdue visualization of rotations test. Chem Educ 2(4):1–17
Article
Google Scholar
Bombeke K, Van Looy J, Szmalec A, Duyck W (2013) Leaving the third dimension: no measurable evidence for cognitive aftereffects of stereoscopic 3D movies. J Soc Inform Display 21(4):159–166
Article
Google Scholar
Brown S (2013) From novelty to normal: 3DTV as special effect. Crit Stud Telev Int J Telev Stud 8(3):33–46
Article
Google Scholar
Bunzeck N, Düzel E (2006) Absolute coding of stimulus novelty in the human substantia nigra/VTA. Neuron 51(3):369–379
Cid XC, Lopez RE (2010) The impact of stereo display on student understanding of phases of the moon. Astron Educ Rev 9(1):010105
Article
Google Scholar
Cliburn D, Krantz J (2008) Towards an effective low-cost virtual reality display system for education. J Comput Sci Coll 23(3):147–153
Google Scholar
Cruz-Neira C, Sandi DJ, DeFanti TA (1993) Surround-screen projection-based virtual reality: the design and implementation of the CAVE. Commun ACM 35(6):64–72
Article
Google Scholar
De Winter JCF, Wieringa PA, Dankelman J, Mulder M, Van Paassen MM, De Groot S (2007) Driving simulator fidelity and training effectiveness. In: Proceedings of the 26th European annual conference on human decision making and manual control, Lyngby, Denmark
Drascic D (1991) Skill acquisition and task performance in teleoperation using monoscopic and stereoscopic video remote viewing. In: Proceedings of the human factors and ergonomics society annual meeting, vol 35, No. 19. SAGE, pp 1367–1371
Dukes P, Bruton D (2008) A Geowall with physics and astronomy applications. Phys Teach 46(3):180–183
Article
Google Scholar
Fluke CJ, Bourke PD (2005) Astronomy visualisation in reflection. The Planetarian 34:10–15
Google Scholar
Fraser J, Heimlich JE, Jacobsen J, Yocco V, Sickler J, Kisiel J, Stahl J (2012) Giant screen film and science learning in museums. Mus Manag Curatorship 27(2):179–195
Article
Google Scholar
Gurevitch L, Ross M (2013) Stereoscopic media: scholarship beyond booms and busts. Public 24(47):83–93
Article
Google Scholar
Hansen J, Barnett M, MaKinster J, Keating T (2004) The impact of three-dimensional computational modeling on student understanding of astronomical concepts: a quantitative analysis. Int J Sci Educ 26(11):1365–1575
Article
Google Scholar
Holford DG, Kempa RF (1970) The effectiveness of stereoscopic viewing in the learning of spatial relationships in structural chemistry. J Res Sci Teach 7(3):265–270
Article
Google Scholar
Hsu J, Pizlo Z, Babbs CF, Chelberg DM, Delp EJ III (1994) Design of studies to test the effectiveness of stereo imaging truth or dare: is stereo viewing really better? In: IS&T/SPIE 1994 international symposium on electronic imaging: science and technology. International Society for Optics and Photonics, pp 211–222
Isik-Ercan Z, Kim B, Nowak J (2012) Can 3D visualization assist in young children’s understanding of Sun–Earth–Moon system? Int J Knowl Soc Res 3(4):12–21
Article
Google Scholar
Keebler JR (2011) Effects of 3D stereoscopy, visuospatial working memory, and perceptions of simulation experience on the memorization of confusable objects. Doctoral dissertation, University of Central Florida Orlando, FL
Kennedy C (1936) The development and use of stereo photography for educational purposes. SMPTE Motion Imaging J 26(1):3–17
Article
Google Scholar
Kim WS, Ellis SR, Tyler ME, Hannaford B, Stark LW (1987) Quantitative evaluation of perspective and stereoscopic displays in three-axis manual tracking tasks. IEEE Trans Syst Man Cybern 17(1):61–72
Article
Google Scholar
Kirschner PA, Ayres P, Chandler P (2011) Contemporary cognitive load theory research: the good, the bad and the ugly. Comput Hum Behav 27(1):99–105
Article
Google Scholar
Kooi FL, Toet A (2004) Visual comfort of binocular and 3D displays. Displays 25(2–3):99–108
Article
Google Scholar
Kozhevnikov M, Hegarty M, Mayer RE (2002) Revising the visualizer–verbalizer dimension: evidence for two types of visualizers. Cogn Instr 20(1):47–77
Article
Google Scholar
Lambooij M, Fortuin M, Heynderickx I, IJsselsteijn W (2009) Visual discomfort and visual fatigue of stereoscopic displays: a review. J Imaging Sci Technol 53(3):30201-1
Article
Google Scholar
Lantz E (2011) Planetarium of the future. Curator Mus J 54(3):293–312
Article
Google Scholar
LaViola JJ Jr, Litwiller T (2011) Evaluating the benefits of 3d stereo in modern video games. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 2345–2354
Lo WY, Tsai YP, Chen CW, Hung YP (2004) Stereoscopic kiosk for virtual museum. In: Proceedings of international computer symposium. Symposium conducted at the meeting of Ministry of Education, Republic of China
Lopez RE, Hamed K (2004) Student interpretations of 2-D and 3-D renderings of the substorm current wedge. J Atmos Solar Terr Phys 66(15):1509–1517
Article
Google Scholar
Mayer RE (2005) Principles for reducing extraneous processing in multimedia learning: coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In: Mayer RE (ed) Cambridge handbook of multimedia learning. Cambridge University Press, New York, pp 183–200
Chapter
Google Scholar
McIntire JP, Havig PR, Geiselman EE (2012) What is 3D good for? A review of human performance on stereoscopic 3D displays. In: SPIE defense, security, and sensing. International Society for Optics and Photonics, pp 83830X–83830X
McIntire JP, Havig PR, Geiselman EE (2014) Stereoscopic 3D displays and human performance: a comprehensive review. Displays 35(1):18–26
Article
Google Scholar
Michael WB, Guilford JP, Fruchter B, Zimmerman WS (1957) The description of spatial-visualization abilities. Educ Psychol Measur 17:185–199
Article
Google Scholar
Mowafy L, Thurman RA (1993) Training pilots to visualize large-scale spatial relationships in a stereoscopic display. In: IS&T/SPIE’s symposium on electronic imaging: science and technology. International Society for Optics and Photonics, pp 72–81
Nataupsky M, Crittenden L (1988) Stereo 3-D and non-stereo presentations of a computer-generated pictorial primary flight display with pathway augmentation
National Aeronautics and Space Administration (2000) Into the eye of the storm. Photograph. Retrieved from http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA02636
National Research Council (2006) Learning to think spatially: GIS as a support system in the K-12 curriculum. The National Academies Press, Washington
Google Scholar
Nemire K (1998) Enhancing cockpit design with an immersive virtual environment rapid prototyping and simulation system. In: Aerospace/defense sensing and controls. International Society for Optics and Photonics, pp 112–123
Newcombe NS (2010) Picture this: increasing math and science learning by improving spatial thinking. Am Educ 34(2):29
Google Scholar
Okuyama F (1999) Evaluation of stereoscopic display with visual function and interview. In: Electronic Imaging’99. International Society for Optics and Photonics, pp 28–35
Paas F, Tuovinen JE, Tabbers H, Van Gerven PW (2003) Cognitive load measurement as a means to advance cognitive load theory. Educ Psychol 38(1):63–71
Article
Google Scholar
Patel M, White M, Walczak K, Sayd P (2003) Digitisation to presentation: building virtual museum exhibitions. In: Vision, video and graphics, Bath, England
Patterson R, Silzars A (2009) Immersive stereo displays, intuitive reasoning, and cognitive engineering. J Soc Inform Display 17(5):443–448
Article
Google Scholar
Pepper RL, Smith DC, Cole RE (1981) Stereo TV improves operator performance under degraded visibility conditions. Opt Eng 20(4):579–585
Article
Google Scholar
Pfautz JD (2001) Sampling artifacts in perspective and stereo displays. In: Photonics west 2001-electronic imaging. International Society for Optics and Photonics, pp 54–62
Piaget J (1956) Child’s conception of space, vol 4. Routledge, London
Google Scholar
Pietschmann D, Liebold B, Valtin G, Ohler P (2013) Taking space literally: reconceptualizing the effects of stereoscopic representation on user experience. Italian Journal of Game Studies 2(2)
Pölönen M, Järvenpää T, Bilcu B (2013) Stereoscopic 3D entertainment and its effect on viewing comfort: comparison of children and adults. Appl Ergon 44(1):151–160
Article
Google Scholar
Price A, Lee HS (2010) The effect of two-dimensional and stereoscopic presentation on middle school students’ performance of spatial cognition tasks. J Sci Educ Technol 19(1):90–103
Article
Google Scholar
Rapp DN, Culpepper SA, Kirkby K, Morin P (2007) Fostering students’ comprehension of topographic maps. J Geosci Educ 55(1):5
Google Scholar
Reinhart WF (1991) Depth cueing for visual search and cursor positioning. In: Electronic Imaging’91, San Jose, CA. International Society for Optics and Photonics, pp 221–232
Roussou M (2000) Immersive interactive virtual reality and informal education. In: Stephanidis C (ed) Proceedings of the ERCIM WG UI4ALL one-day joint workshop with i3 Spring Days 2000 on “Interactive Learning Environments for Children”, Athens, Greece
Shipley TF, Epstein R, Newcombe N (2014) Initiative 1: characterize spatial skills relevant to STEM and chart their development. Spatial Intelligence and Learning Center. Resource Document. http://spatiallearning.org/index.php/initiatives/initiative-1-characterize-skills. Accessed 31 March 2014
Sweller J (1988) Cognitive load during problem solving: effects on learning. Cogn Sci 12(2):257–285
Article
Google Scholar
Takahashi G, Connolly P (2012) Impact of binocular vision on the perception of geometric shapes in spatial ability testing. In: 67th midyear meeting proceedings, Limerick, Ireland
Trindade J, Fiolhais C, Almeida L (2002) Science learning in virtual environments: a descriptive study. British J Educ Technol 33(4):471–488
Article
Google Scholar
Trotter D (2004) Stereoscopy: modernism and the ‘haptic’. Crit Q 46(4):38–58
Article
Google Scholar
Van Beurden MHPH, IJsselsteijn WA, Juola JF (2012) Effectiveness of stereoscopic displays in medicine: a review. 3D Res 3(1):1–13
Article
Google Scholar
van den Hoogen W, Feys P, Lamers I, Coninx K, Notelaers S, Kerkhofs L, IJsselsteijn W (2012) Visualizing the third dimension in virtual training environments for neurologically impaired persons: beneficial or disruptive? J Neuroeng Rehabil 9(1):73
Article
Google Scholar
Vandenberg SG, Kuse AR (1978) Mental rotations, a group test of three-dimensional spatial visualization. Percept Mot Skills 47(2):599–604
Article
Google Scholar
Vendeland J, Regenbrecht H (2013) Is there any use in stereoscopic slide presentations? http://www.hci.otago.ac.nz/pubs/2013_VendelandRegenbrecht_CHINZ_2013_StereoPres_submission.pdf. Accessed 31 March 2014
Vogt F, Wagner AY (2012) Stereo pairs in astrophysics. Astrophys Space Sci 337(1):79–92
Article
Google Scholar
Wai J, Lubinski D, Benbow CP (2009) Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. J Educ Psychol 101(4):817
Article
Google Scholar
Wheatstone C (1852) XXXVI. Contributions to the physiology of vision.—Part the first. On the some remarkable, and hitherto unobserved, phenomena of binocular vision. Lond Edinb Dublin Philos Mag J Sci 3(18):241–267
Google Scholar
White J (2011) Bumble Bee. Photograph. Retrieved from http://www.flickr.com/photos/kiwizone/6547976295/
Williams SP, Parrish RV (1990) New computational control techniques and increased understanding for stereo 3-D displays. In: SC-DL tentative. International Society for Optics and Photonics, pp 73–82
Wu HK, Shah P (2004) Exploring visuospatial thinking in chemistry learning. Sci Educ 88(3):465–492
Article
Google Scholar
Yim MYC, Cicchirillo VJ, Drumwright ME (2012) The impact of stereoscopic three-dimensional (3-D) advertising. J Advert 41(2):113–128
Article
Google Scholar