Skip to main content

Advertisement

Log in

Learning Science in Grades 3–8 Using Probeware and Computers: Findings from the TEEMSS II Project

  • Published:
Journal of Science Education and Technology Aims and scope Submit manuscript

Abstract

The Technology Enhanced Elementary and Middle School Science II project (TEEMSS), funded by the National Science Foundation, produced 15 inquiry-based instructional science units for teaching in grades 3–8. Each unit uses computers and probeware to support students’ investigations of real-world phenomena using probes (e.g., for temperature or pressure) or, in one case, virtual environments based on mathematical models. TEEMSS units were used in more than 100 classrooms by over 60 teachers and thousands of students. This paper reports on cases in which groups of teachers taught science topics without TEEMSS materials in school year 2004–2005 and then the same teachers taught those topics using TEEMSS materials in 2005–2006. There are eight TEEMSS units for which such comparison data are available. Students showed significant learning gains for all eight. In four cases (sound and electricity, both for grades 3–4; temperature, grades 5–6; and motion, grades 7–8) there were significant differences in science learning favoring the students who used the TEEMSS materials. The effect sizes are 0.58, 0.94, 1.54, and 0.49, respectively. For the other four units there were no significant differences in science learning between TEEMSS and non-TEEMSS students. We discuss the implications of these results for science education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams DD, Shrum JW (1990) The effects of microcomputer-based laboratory exercises on the acquisition of line graph construction and interpretation skills by high school biology students. J Res Sci Teach 27(8):777–787

    Article  Google Scholar 

  • American Association for the Advancement of Science (AAAS) (1993) Benchmarks for science literacy. Oxford University Press, New York

    Google Scholar 

  • Bayraktar S (2001) A meta-analysis of the effectiveness of computer-assisted instruction in science education. J Res Technol Educ 34(2):173–188

    Google Scholar 

  • Beichner RJ (1990) The effect of simultaneous motion presentation and graph generation in a kinematics lab. J Res Sci Teach 27(8):803–815

    Article  Google Scholar 

  • Bonifaz A, Zucker AA (2004) Lessons learned about providing laptops to all students. Education Development Center, Newton

    Google Scholar 

  • Brassell H (1987) The effect of real-time laboratory graphing on learning graphic representations of distance and velocity. J Res Sci Teach 24(4):385–395

    Article  Google Scholar 

  • Friedler Y, Nachmias R, Linn MC (1990) Learning scientific reasoning skills in microcomputer-based laboratories. J Res Sci Teach 27(2):173–191

    Article  Google Scholar 

  • Hudson SB, McMahon KC, Overstreet CM (2002) The 2000 national survey of science and mathematics education: compendium of tables. Horizon Research, Chapel Hill

    Google Scholar 

  • Krajcik JS, Layman J (1993) Microcomputer-based laboratories in the science classroom. Research that matters to the science teacher, no. 31. National Association of Research on Science Teaching (NARST). (Available online at http://www.narst.org/publications/research/microcomputer.htm)

  • Kreikemeier PA, Gallagher L, Penuel WR, Fujii R, Wheaton V, Bakia M (2006) Technology enhanced elementary and middle school science II (TEEMSS II): Research Report 1. SRI International, Menlo Park

  • Laws P (1997) Millikan lecture 1996: promoting active learning based on physics education research in introductory courses. Am J Phys 65(1):14–21

    Article  Google Scholar 

  • Linn MC (2003) Technology and science education: starting points, research programs, and trends. Int J Sci Educ 25(6):727–758

    Article  Google Scholar 

  • Linn MC, Layman JW, Nachmias R (1987) Cognitive consequences of micro-computer-based laboratories: graphing skills development. Contemp Educ Psychol 12(3):244–253

    Article  Google Scholar 

  • Linn MC, Lee H-S, Tinker R, Husic F, Chiu JL (2006) Inquiry learning: teaching and assessing knowledge integration in science. Science 313(5790):1049–1050

    Article  Google Scholar 

  • Lunetta VN, Hofstein A, Clough MP (2007) Learning and teaching in the school science laboratory: an analysis of research, theory, and practice. In: Abell SK, Lederman NG (eds) Handbook of research on science education. Lawrence Earlbaum Associates, Mahwah

    Google Scholar 

  • Metcalf S, Tinker RF (2004) Probeware and handhelds in elementary and middle school science. J Sci Educ Technol 13(1):43–49

    Article  Google Scholar 

  • Millar M (2005) Technology in the lab, Part I: what research says about using probeware in the science classroom. Sci Teach 72(7):34–37

    Google Scholar 

  • Mokros J, Tinker R (1987) The impact of microcomputer-based labs on children’s ability to interpret graphs. J Res Sci Teach 24(4):369–383

    Article  Google Scholar 

  • National Research Council (1995) National science education standards. National Academy of Sciences, Washington

    Google Scholar 

  • Nicolaou C, Nicolaidou I, Zacharia Z, Constantinou C (2007) Fourth graders ability to interpret graphical representations through the use of microcomputer-based labs implemented within an inquiry-based activity sequence. J Comput Math Sci Teach 26(1):75–99

    Google Scholar 

  • Wells J, Lewis L, Greene B (2006) Internet access in U.S. public schools and classrooms: 1994–2005 (Highlights) (FRSS No. 2007-020). National Center for Education Statistics, Washington

Download references

Acknowledgments

Support for the TEEMSS project, including both development of the units and the research reported here, was provided by grant no 9986419 from the National Science Foundation awarded to the Concord Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Zucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zucker, A.A., Tinker, R., Staudt, C. et al. Learning Science in Grades 3–8 Using Probeware and Computers: Findings from the TEEMSS II Project. J Sci Educ Technol 17, 42–48 (2008). https://doi.org/10.1007/s10956-007-9086-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10956-007-9086-y

Keywords

Navigation