Should Science be Taught in Early Childhood?

Abstract

This essay considers the question of why we should teach science to K-2. After initial consideration of two traditional reasons for studying science, six assertions supporting the idea that even small children should be exposed to science are given. These are, in order: (1) Children naturally enjoy observing and thinking about nature. (2) Exposing students to science develops positive attitudes towards science. (3) Early exposure to scientific phenomena leads to better understanding of the scientific concepts studied later in a formal way. (4) The use of scientifically informed language at an early age influences the eventual development of scientific concepts. (5) Children can understand scientific concepts and reason scientifically. (6) Science is an efficient means for developing scientific thinking. Concrete illustrations of some of the ideas discussed in this essay, particularly, how language and prior knowledge may influence the development of scientific concepts, are then provided. The essay concludes by emphasizing that there is a window of opportunity that educators should exploit by presenting science as part of the curriculum in both kindergarten and the first years of primary school.

This is a preview of subscription content, access via your institution.

References

  1. Ausubel, D. P. (1968). Educational Psychology: A Cognitive View. Rinehart and Winston, New York, Holt.

    Google Scholar 

  2. Bauer, H. H. (1994). Scientific Literacy and the Myth of the Scientific Method, University of Illinois Press, Urbana.

    Google Scholar 

  3. Begley, S. (1996). Your child’s brain. Newsweek (February 19),pp. 41–46.

  4. Black, P., and Harlen, W. (1993). How can we specify concepts for primary science? In Black, P. J., and Lucus, A. M. (Eds.), Children’s Informal Ideas in Science, Routledge, London,pp. 208–229.

    Google Scholar 

  5. Bonder, G. (1986). Constructivism: A theory of knowledge. Journal of Chemical Education 63: 873–878.

    Google Scholar 

  6. Bourdieu, P. (1992). Language and Symbolic Power, HarvardUniversity Press, Cambridge, MA.

    Google Scholar 

  7. Boyle, D. G. (1971). Language and Thinking in Human Development, Hutchinson University Library, London.

    Google Scholar 

  8. Brown, A. L. (1990). Domain-specific principles affect learning and transfer in children. Cognitive Science 14: 107–133.

    Article  Google Scholar 

  9. Brown, A. L., and Campione, J. C. (1994). Guided discovery in a community of learners. In McGilly, K. (Ed.), Classroom Lessons: Integrating Cognitive Theory and Classroom Practice, MIT Press/Bradford Press, Cambridge, MA, pp. 229–270.

    Google Scholar 

  10. Bruce, B. C., Bruce, S., Conrad, R., and Huang, H. (1997). Collaboration in science education: University science students in the elementary school classroom. Journal of Research in Science Teaching 34: 69–88.

    Article  Google Scholar 

  11. Bruner, J. S. (1960). The Process of Education. Harvard University Press, Cambridge, MA.

    Google Scholar 

  12. Carey, S. (1978). The child as word learner. In Halle, M., Bresnan, J., and Miller, G. (Eds.), Linguistic Theory and Psychological Reality, Cambridge, MA, pp. 264-293.

    Google Scholar 

  13. Carson, R. (1984). The Sense of Wonder, Harper and Row, Publishers, New York.

    Google Scholar 

  14. Chan, C., Burtis, J., and Bereiter, C. (1997). Knowledge-building as a mediator of conflict in conceptual change. Cognition and Instruction 15: 1–40.

    Google Scholar 

  15. Cho, H., Kahle, J. B., and Nordland, F. H. (1985). An investigation of high school biology textbooks as a source of misconceptions and difficulties in genetics and some suggestions for teaching genetics. Science Education 69: 707–719.

    Google Scholar 

  16. Clark, E. V. (1983). Meaning and concepts. In Mussen, P. H. (Ed.), Handbook of child psychology, John Wiley, New York, pp. 787–840.

    Google Scholar 

  17. Clement, J. (1982). Students’ preconceptions in introductory mechanics. American Journal of Physics 50: 66–71.

    Article  Google Scholar 

  18. Clement, J. (1987). Overcoming students’ misconceptions in physics: The role of anchoring intuitions and analogical validity. In Novak, J. D. (Ed.), Proceedings of the Second International Seminar Misconceptions and Educational Strategies in Science and Mathematics, 3 (Vol. 1). Cornell University, Ithaca, NY, pp. 84–97.

    Google Scholar 

  19. Cohen, R., Eylon, B., and Ganiel, U. (1983). Potential difference and current in simple electric circuits: A study of students’ concepts. American Journal of Physics 51: 407–412.

    Article  Google Scholar 

  20. Collins, A., and Quillian, M. (1969) Semantic hierarchies and cognitive economy, Journal of Verbal Learning and Verbal Behavior 8: 7–240.

    Google Scholar 

  21. Crawley, F. E. and Black, C. (1992). Causal modling of secondary students’ intention to enroll in physics. Journal of Research in Science Teaching, 29: 585–599.

    Google Scholar 

  22. Drake, S. (1978). Galileo at Work: His Scientific Biography,University of Chicago Press, Chicago.

    Google Scholar 

  23. Driver, R., Guesne, E., and Tiberghien, A. (1985). Some features of children’s ideas. In Driver, R., Guesne, E., and Tiberghien, A. (Eds.), Children’s Ideas in Science, Open University Press, Philadelphia, pp. 193–201.

    Google Scholar 

  24. Driver, R., and Bell, B. (1986). Students’ thinking and the learning of science: A constructivist view. School Science Review 67: 443–456.

    Google Scholar 

  25. Dunbar, K., and Klahr, D. (1989). Developmental differences in scientific discovery strategies. In Klahr, D., and Kotovsky, K. (Eds.), Complex Information Processing: The Impact of Herbert A. Simon, Erlbaum, Hillsdale, NJ, pp. 109–143.

    Google Scholar 

  26. Einstein, A., and Infeld, L. (1938). The Evolution of Physics,Simon & Schuster, New York.

    Google Scholar 

  27. Eshach, H. (2003). Small-group interview-based discussions about diffused shadow. Journal of Science Education and Technology 12: 261–275.

    Article  Google Scholar 

  28. Eshach, H., and Schwartz, J. (2004). Middle school students’ preconceptions of sound. Presented at the annual meeting of the National Association for Research in Science Teaching (NARST), Vancouver, BC, Canada, April 1–3, 2004.

  29. Feher, E., and Rice, K. (1988). Shadows and anti-images: Children’s conceptions of light and vision. Science Education 72: 637–649.

    Google Scholar 

  30. Galili, I., and Hazan, A. (2000). Learners’ knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education 22: 57–88.

    Article  Google Scholar 

  31. Gardner, H. (1999). The Disciplined Mind: What All Students Should Understand, Simon & Schuster, New York.

    Google Scholar 

  32. Gelman, S. A., and Markman, E. M. (1986). Categories and induction in young children. Cognition 23: 183–208.

    Article  PubMed  Google Scholar 

  33. Guesne, E. (1985). Light. In Driver, R., Guesne, E., and Tiberghien, A. (Eds.), Children’s Ideas in Science, OpenUniversity Press, Milton Keynes, U.K./Philadelphia, pp. 10–32.

    Google Scholar 

  34. Gustafson, B. J., and Rowell, P. M. (1995). Elementary preservice teachers: Constructing conceptions about learning science, teaching science and the nature of science. International Journal of Science Education 17: 589–605.

    Google Scholar 

  35. Halloun, I. A., and Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics 53: 1056–1065.

    Article  Google Scholar 

  36. Hatano, G., Siegler, R. S., Richards, P. D., Inagaki, K., Stavy, R., and Wax, N. (1993). The development of biological knowledge: A multi-national study. Cognitive Development 8: 47–62.

    Article  Google Scholar 

  37. Heit, E. (1994). Models of the effects of prior knowledge on category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition 20: 1264–282.

    Google Scholar 

  38. Heit, E. (1997). Knowledge and concept learning. In Lamberts, K., and Shanks, D. (Eds.), Knowledge, Concepts, and Categories, MIT Press: Cambridge, MA.

    Google Scholar 

  39. Hestenes, D., Wells, M., and Gregg, S. (1992). Force concept inventory. The Physics Teacher 30: 141–154.

    Google Scholar 

  40. Hewson, P. W., and Hewson, M. G. A’ B. (1984). The role of conceptual conflict in conceptual change and the design of instruction. Instructional Science 13: 1–13

    Article  Google Scholar 

  41. Holton, G. (1975). Science, Science Teaching, and Rationality. In Hook, S., Kurz, P., and Todorovich, M. (Eds.), The Philosophy of the Curriculum, Prometheus Books, Buffalo, NY,pp. 101–108.

    Google Scholar 

  42. Huxley, T. H. (1893). On the educational value of the natural history sciences. In Huxley, T. H. (Ed.), Collected Essays, III, London, pp. 38–65 (Repr. Greenwood, Press, NY,1968).

    Google Scholar 

  43. Inhelder, B., and Piaget, J. (1958). The Growth of Logical Thinking from Childhood to Adolescence (A. Parsons & S. Milgram, Trans.), Basic Books, New York (Original work published 1955).

    Google Scholar 

  44. Keys, C. W. (1994). The development of scientific reasoning skills in conjunction with collaborative writing assignments: An interpretive study of six ninth-grade students. Journal of Research in Science Teaching 31: 1003–1022.

    Google Scholar 

  45. Klahr, D. (2000). Exploring Science: The Cognition and Development of Discovery Processes, MIT Press, Cambridge, MA.

    Google Scholar 

  46. Klahr, D., Fay, A., and Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology 25: 111–146.

    Article  PubMed  Google Scholar 

  47. Kosslyn, S. M. (1994). Image and the Brain: The Resolution of the Imagery Debate, MIT Press, Cambridge, MA.

    Google Scholar 

  48. Kuhn, D., Gracia-Milla, M., Zohar, A., and Anderson, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, Serial No. 245, 60: 1–28.

    PubMed  Google Scholar 

  49. Kuhn, D., and Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development 1: 113–129.

    Article  Google Scholar 

  50. Kuhn, D., Amsel, E., and O’Loughhlin, M. (1988). The Development of Scientific Thinking Skills, Academic Press, Orlando, FL.

    Google Scholar 

  51. Kuhn, D., Black, J., Keselman, A., and Kaplan, D. (2000). The development of cognitive skills to support inquiry learning. Cognition and Instruction 18: 495–523.

    Article  Google Scholar 

  52. Kuhn, D., Schauble, L., and Gracia-Milla, M. (1992). Cross domain development of scientific reasoning. Cognition and Instruction 9: 285–327.

    Google Scholar 

  53. Langley, D., Ronen, M., and Eylon, B.-S. (1997). Light propagation and visual patterns: Preinstruction learners’ conceptions. Journal of Research in Science Teaching 34: 300–424.

    Article  Google Scholar 

  54. Layton, D. (1973). Science for the People, George Allen & Unwin Ltd., London.

    Google Scholar 

  55. Lee, C. (1992). Literacy, cultural diversity, and instruction. Education and Urban Society 24: 279–291.

    Google Scholar 

  56. McCloskey, M., Caramazza, A., and Green, B. (1980). Curvilinear motion in the absence of external forces: NaÏve beliefs about the motion of objects. Science 210: 1139–1141.

    Google Scholar 

  57. McCloskey, M. (1983). Intuitive physics. Scientific American 248: 113–122.

    Google Scholar 

  58. McDuffie, T. E. Jr. (2001). Scientists — geeks and nerds? Science and Children 38: 16–19.

    Google Scholar 

  59. Metz, K. E. (1995). Reassessment of developmental constraints on children’s science instruction. Review of Educational Research 65: 93–127.

    Google Scholar 

  60. Miller, G. E., Abrahamson, S., Cohen, I. S., Graser, H. P., Harnack, R. S., and Land, A. (1961). Teaching and Learning in Medical School, Harvard University Press, Cambridge, MA.

    Google Scholar 

  61. Moore, G. E. (1903). Principia Ethica, Cambridge University Press, London.

    Google Scholar 

  62. Nash, J. M. (1997). Fertile minds. Time 3: 49–56.

    Google Scholar 

  63. NSES (1996). Available at http://www.nap.edu/readingroom/books/nses/html/6a.html#sis.

  64. Paivio, A. (1986). Mental Representations: A Dual Coding Approach, Oxford University Press, Oxford.

    Google Scholar 

  65. Parker, J., and Spink, E. (1997). Becoming science teachers: An evaluation of the initial stages of elementary teacher training. Assessment and Evaluation in Higher Education 22: 17–31.

    Google Scholar 

  66. Piaget, J., and Inhelder, B. (1975). The Origin of the Idea of Chance in Children (Leake, L., Burrell, P., and Fishbein, H. D., Trans.). Routledge and Kegan Paul, London (Original work published 1941).

    Google Scholar 

  67. Piaget, J. (1946). Les notions de movement et de vitesse chez l’enfant, Presses Universities de France, Paris.

    Google Scholar 

  68. Piaget, J. (1969). The Child’s Conception of Time (Pomerans, A.J., Trans.) Ballantine Books, New York (Original work published 1927).

    Google Scholar 

  69. Piaget, J., Inhelder, B., and Szeminska, A. (1952). The Child Conception of Number (Gattengo, C. and Hodgson, F.M., Trans.) Routledge & Kegan Paul, London (Original work published 1941).

    Google Scholar 

  70. Piaget, J. (1987). Possibility and necessity: Vol. 2. The Role of Necessity in Cognitive Development (Feider, H., Trans.)University of Minnesota Press, Minneapolis (Original work published 1983).

    Google Scholar 

  71. Popper, K. (1959). The Logic of Scientific Discovery, Harper and Row, New York.

    Google Scholar 

  72. Popper, K. (1963). Conjectures and Refutations, Routledge and Kegan Paul, London.

    Google Scholar 

  73. Raffini, J. P. (1993). Winners without losers: Structures and strategies for increasing student motivation to learn. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  74. Ruffman, T., Perner, J., Olson, D. R., and Doherty, M. (1993). Reflecting on scientific thinking: Children’s understanding of the hypothesis-evidence relation. Child Development 64: 1617–1636.

    PubMed  Google Scholar 

  75. Ryan, R. M., and Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology 25: 54–67.

    Article  PubMed  Google Scholar 

  76. Ryle, G. (1949). The Concept of Mind, Hutchinson, London.

    Google Scholar 

  77. Sahlins, M. (1976). Culture and Practical Reasoning, ChicagoUniversity Press, Chicago.

    Google Scholar 

  78. Sanger, M. J., and Greenbowe, T. J. (1997). Common student misconceptions in electrochemistry: galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching 34: 377–398.

    Article  Google Scholar 

  79. Schauble, L. (1990). Belief revision in children: The role of prior knowledge and strategies for generating evidence. Journal of Experimental Child Psychology 49: 31–57.

    Article  PubMed  Google Scholar 

  80. Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology 32: 102–119.

    Article  Google Scholar 

  81. Schauble, L., Glaser, R., Duschl, R. A., Schulze, S., and John, J. (1995). Students’ understanding of the objectives and procedures of experimentation in the science classroom. Journal of the Learning Sciences 4: 131–166.

    Article  Google Scholar 

  82. Schwab, J. J., and Brandwein, P. (1966). The Teaching of Science, Harvard University Press, Cambridge, MA.

    Google Scholar 

  83. Sfard, A. (2000). Steering (dis)course between metaphor and rigor: Using focal analysis to investigate the emergence of mathematical objects. Journal for Research in Mathematics Education 31: 296–327.

    Google Scholar 

  84. Shore, R. (1997). Rethinking the Brain: New Insights into Early Development, Families and Work Institute, New York.

    Google Scholar 

  85. Skamp, K., and Mueller, A. (2001). Student teachers’ conceptions about effective elementary science teaching: A longitudinal study. International Journal of Science Education 23: 331–351.

    Article  Google Scholar 

  86. Smith, J. P., III, diSessa, A. A., and Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences 3: 115–163.

    Article  Google Scholar 

  87. Sodian, B., Zaitchik, D., and Carey, S. (1991). Young children’s differentiation of hypothetical beliefs from evidence. Child Development 62: 753–766.

    Google Scholar 

  88. Stepans, J., and McCormick, A. (1985). A study of scientific conceptions and attitudes toward science of prospective elementary teachers: A research report. (ERIC Document Reproduction Service No. ED 266024).

  89. Strauss, S. (1998). Cognitive development and science education: Towards a middle level. In Damon W. (Series Ed.), Sigel I.E., and Renninger K. A. (Vol. Eds.), Handbook of Child Psychology: Volume 4, Child Psychology (5th ed), Wiley, New York, pp. 357–399.

    Google Scholar 

  90. Superior Committee on Science, Mathematics and Technology Education in Israel. (1992). Tomorrow 98. Publications Department, Ministry of Education, Culture and Sport, Jerusalem, Israel.

    Google Scholar 

  91. Tosun, T. (2000). The beliefs of preservice elementary teachers towards science and science teaching. School Science and Mathematics 100: 374–379.

    Google Scholar 

  92. Toulmin, S. (1960). The Philosophy of Science: An Introduction, Harper & Brothers, New York.

    Google Scholar 

  93. Ulam, S. (1976) Adventures of a Mathematician, Charles Scribner’s Sons, New York.

    Google Scholar 

  94. Viennot, L. (1979). Spontaneous reasoning in elementary dynamics. European Journal of Science Education 1: 205–221.

    Google Scholar 

  95. Vygotsky, L. S. (1933/1978). The role of play in development. In Cole, M., John-Steiner, V., Schribner, S., and Souberman, E. (Eds.), Mind in Society, Harvard University Press,Cambridge, Mass.

    Google Scholar 

  96. Vygotsky, L. S. (1934/1986). Thought and Language. Translated and edited by Alex Kozulin Cambridge, MIT Press,MA.

    Google Scholar 

  97. Wills, P. (1977). Learning to Labor: How Working Class Lads Get Working Class Jobs, Columbia University Press, New York.

    Google Scholar 

  98. Wolpert, L. (1993). The Unnatural Nature of Science, Faber & Faber, London.

    Google Scholar 

  99. Yates, G. C. R., and Chandler, M. (2001). Where have all the skeptics gone? Patterns of new age beliefs and anti-scientific attitudes in preservice elementary teachers. Research in Science Education 30: 377–387.

    Google Scholar 

  100. Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review 20: 99–149.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haim Eshach.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eshach, H., Fried, M.N. Should Science be Taught in Early Childhood?. J Sci Educ Technol 14, 315–336 (2005). https://doi.org/10.1007/s10956-005-7198-9

Download citation

Keywords

  • children’s scientific thinking
  • K-2 science education
  • justifications for early science teaching
  • windows of opportunity