Skip to main content
Log in

Quantum Random Evolutions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this work, we develop a mathematical framework to model a quantum system whose time evolution may depend on the state of a randomly changing environment that evolves according to a Markovian process. When the environment changes its state, three possible things may occur: the quantum system starts evolving according to a new Hamiltonian, it may suffer an instantaneous perturbation that changes its state or both things may happen simultaneously. We consider the case of quantum systems with finite dimensional Hilbert state space, in which case the observables are described by Hermitian matrices. We show how to average over the environment to predict the expected value of the density matrix with which one can compute the expected values of the observables of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There is no data availability issue associated to this submission.

References

  1. Clauser, M.J., Blume, M.: Stochastic theory of line shape: Off diagonal effects in fine and hyperfine structure. Phys. Rev. B 3, 583–591 (1971). https://doi.org/10.1103/PhysRevB.3.583

    Article  ADS  Google Scholar 

  2. Goldstein, S.: On diffusion by discontinuous movements, and on the telegraph, equation. J. Mech. Appl. Math. 6, 129–156 (1951). https://doi.org/10.1093/qjmam/4.2.129

    Article  MathSciNet  Google Scholar 

  3. Cane, V.R.: Diffusion models with relativity effects. J. Appl. Probab. 12, 263–273 (1975). https://doi.org/10.1017/S0021900200047707

    Article  MathSciNet  Google Scholar 

  4. Pinsky, M.A.: Lectures on Random Evolution. World Scientific Publishers, River Edge (1991)

    Book  Google Scholar 

  5. Swishchuk, A.V.: Random Evolutions and Their Applications. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  6. Kolesnik, A.D.: Markov Random Flights. CRC Press, Boca Raton (2021)

    Book  Google Scholar 

  7. Davis, M.H.A.: Markov Models and Optimization. Chapman & Hall, Boca Raton (1993)

    Book  Google Scholar 

  8. Lebowitz, J., Shimony, A.: Statistical mechanics of open systems. Phys. Rev. 128, 1945–1958 (1962). https://doi.org/10.1103/PhysRev.128.1945

    Article  ADS  MathSciNet  Google Scholar 

  9. Van Kampen, N.: Stochastic Processes in Physics and Chemistry. North Holland, Amsterdam (1981)

    Google Scholar 

  10. Lindenberg, K., West, B.J.: The Nonequilibrium Statistical Mechanics of Open and Closed Systems. VCH Publishers, New York (1990)

    Google Scholar 

  11. Breuer, H.-P., Petruccelli, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    Google Scholar 

  12. Gardiner, C.W., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd edn. Springer, New York (2004)

    Google Scholar 

  13. Cohen, L., Poor, H.V., Scully, O.M. (eds.): Classical, Semi-classical and Quantum Noise. Springer, New York (2012)

    Google Scholar 

  14. Weiss, U.: Quantum Dsipative Systems. World Scientific Publishers, Singapore (2022)

    Google Scholar 

  15. Lebowitz, J., Rost, H.: The Einstein relation for the displacement of a test particle in a random environment. Stoch. Process. Appl. 54, 183–196 (1994). https://doi.org/10.1016/0304-4149(94)00015-8

    Article  MathSciNet  Google Scholar 

  16. Czerwinski, A.: Dynamics of open quantum systems-Markovian semigroups and beyond. Symmetry (2022). https://doi.org/10.3390/sym14081752

    Article  Google Scholar 

  17. Grosowski, P., Seif, A., Koch, J., Clerk, A.A.: Simple master equations for describing systems subject to classical non-Markovian noise. Quantum 9, 972–990 (2023). https://doi.org/10.22331/q-2023-04-06-972

    Article  Google Scholar 

  18. Saira, O.-P., Bergholm, V., Ojanen, T., Möttönen, M.: Equivalent qubit dynamics under classical and quantum noise. Phys. Rev. 75, 012308 (2007). https://doi.org/10.1103/PhysRevA.75.012308

    Article  Google Scholar 

  19. Aguilar, J.-P., Berglund, V.: The effect of classical noise on a quantum two-level system. J. Math. Phys. 49, 102102 (2008). https://doi.org/10.1063/1.2988180

    Article  ADS  MathSciNet  Google Scholar 

  20. Huang, Q., Merkil, M.: Qubit dynamics with classical noise. Phys. Open 5, 100043 (2020). https://doi.org/10.1016/j.physo.2020.100043

    Article  Google Scholar 

  21. Chernowitz, D., Gritsev, V.: Entanglement dynamics of random GUE Hamiltonians. Sci. Post. Phys. 10, 071 (2021). https://doi.org/10.21468/SciPostPhys.10.3.071

    Article  ADS  MathSciNet  Google Scholar 

  22. Bratus, E., Pastur, L.: On the qubits dynamics in random matrix environment. J. Phys. Commun. 2, 015017 (2018). https://doi.org/10.1088/2399-6528/aaa2f1

    Article  Google Scholar 

  23. Gantert, N., Guo, X., Nagel, J.: Einstein relation and steady states for the random conductance model. Ann. Probab. 45, 2533–2567 (2017). https://doi.org/10.1214/16-AOP1119

    Article  MathSciNet  Google Scholar 

  24. Berger, N., Gantert, N., Nagel, J.: The speed of biased random walk among random conductances. Ann. L’Inst. Henri Poincaré Probab. Stat. 55, 862–881 (2019). https://doi.org/10.1214/18-AIHP901

    Article  MathSciNet  Google Scholar 

  25. McKeon, D.G.C., Ord, G.N.: On how the \((1+1)\)-dimensional Dirac equation arises in classical physics. Found. Phys. Lett. 9, 447–456 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank the reviewers and the editors for their several suggestion for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Gzyl.

Additional information

Communicated by Keiji Saito.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gzyl, H. Quantum Random Evolutions. J Stat Phys 191, 67 (2024). https://doi.org/10.1007/s10955-024-03284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-024-03284-x

Keywords

Mathematics Subject Classification

Navigation