Skip to main content
Log in

Piecewise Monotonic Maps with a Common Piecewise Constant Stationary Density

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For a prescribed piecewise constant density function defined on the unit interval, we construct piecewise strictly monotonic maps, consisting of piecewise stretching linear functions, from the interval to itself whose stationary density is the given function. We also show the statistical stability of such maps under some natural condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bose, C., Froyland, G., Gonzalez-Tokman, C., Murray, R.: Ulam’s method for Lasota–Yorke maps with holes. SIAM J. Appl. Dyn. Syst. 13(2), 1010–1032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bose, C., Murray, R.: The exact rate of approximation in Ulam’s method. Discrete Contin. Dyn. Syst. 7(1), 219–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyarsky, A., Góra, P.: Laws of Chaos: invariant measures and dynamical systems in one dimension. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  4. Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind GAIO—Set oriented numerical methods for dynamical systems. In: Fiedler, B. (ed.) Ergodic theory, analysis, and efficient simulation of dynamical systems, pp. 145–174. Springer, Berlin (2001)

    Chapter  MATH  Google Scholar 

  5. Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36(2), 491–515 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, J., Du, Q., Li, T.-Y.: High order approximation of the Frobenius–Perron operator. Appl. Math. Compt. 53, 151–171 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, J., Li, T.-Y.: Markov finite approximation of Frobenius–Perron operator. Nonlinear Anal. 17(8), 759–772 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, J., Li, T.-Y.: A convergence rate analysis for Markov finite approximations to a class of Frobenius–Perron operators. Nonlinear Anal. 31(5/6), 765–777 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, J., Rhee, N.: On the norm convergence of a piecewise linear least squares method for Frobenius–Perron operators. J. Math. Anal. Appl. 386, 91–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, J., Zhou, A.: Finite approximations of Frobenius-Perron operators. A solution of Ulam’s conjecture to multi-dimensional transformations. Physica D 92, 61–68 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ding, J., Zhou, A.: Statistical properties of deterministic systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  12. Ding, J., Zhou, A.: Nonnegative Matrices, Positive Operators, and Applications. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  13. Ershov, S.V., Malinetskii, G.G.: The solution of the inverse problem for the Perron–Frobenius equation. USSR Compt. Math. Math. Phys. 28, 136–141 (1988)

    Article  MathSciNet  Google Scholar 

  14. Friedman, N., Boyarsky, A.: Construction of ergodic transformations. Adv. Math. 45, 213–254 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Froyland, G.: Ulam’s method for random interval maps. Nonlinearity 12(4), 1029–1052 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Galatolo, P., Pollicott, M.: Controlling the statistical properties of expanding maps. Nonlinearity 30(7), 2737–2751 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Góra, P., Boyarsky, A.: A matrix solution to the inverse Perron–Frobenius problem. Proc. Amer. Math. Soc. 118, 409–414 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kloeckner, B.: The linear request problem. Proc. Amer. Math. Soc. 146(7), 2953–2962 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lasota, A., Mackey, M.: Chaos, fractals, and noise, Sec Springer, New York (1994)

    Book  MATH  Google Scholar 

  20. Lasota, A., Yorke, J.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186, 481–488 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lasota, A., Yorke, J.: Exact dynamical systems and the Frobenius–Perron operator. Trans. Amer. Math. Soc. 273, 375–384 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, T.-Y.: Finite approximation for the Frobenius–Perron operator, a solution to Ulam’s conjecture. J. Approx. Theor. 17, 177–186 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liverani, C.: Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study. Nonlinearity 14, 463–490 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. MacKay, R.S.: Management of complex dynamical systems. Nonlinearity 31(2), R52 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. McDonald, A.M., van Wyk, M.A., Chen, G.R.: The inverse Frobenius–Perron problem: a survey of solutions to the original problem formulation. AIMS Math. 6(1), 11200–11232 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rogers, A., Shorten, R., Heffernan, D.M.: Synthesizing chaotic maps with prescribed invariant densities. Phys. Lett. A. 330, 435–441 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Uhl, P.M., Bohn, H., Rhee, N.: On constructing chaotic maps with a prescribed probability distribution. Missouri J. Math. Sci. 30(1), 77–84 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Uhl, P.M., Bohn, H., Rhee, N.: Uniqueness of the common invariant density and the convergence of the fixed point iteration. Missouri J. Math. Sci. 31(2), 113–120 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ulam, S.M.: A collection of mathematical problems. Interscience tracts in pure and applied mathematics. Interscience, New York (1960)

    Google Scholar 

Download references

Funding

The research of Zi Wang was supported in part by the National Natural Science Foundation of China under Grant No. 12001142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi Wang.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Peter Balint.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ding, J. & Rhee, N. Piecewise Monotonic Maps with a Common Piecewise Constant Stationary Density. J Stat Phys 190, 145 (2023). https://doi.org/10.1007/s10955-023-03143-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03143-1

Keywords

Navigation