Skip to main content
Log in

A Stochastic Combustion Model with Thresholds on Trees

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Place one active particle at the root of a graph and a Poisson-distributed number of dormant particles at the other vertices. Active particles perform simple random walk. Once the number of visits to a site reaches a random threshold, any dormant particles there become active. For this process on infinite d-ary trees, we show that the total number of root visits undergoes a phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed.

References

  1. Alves, O., Machado, F., Popov, S.: Phase transition for the frog model. Electron. J. Probab. 7, 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, O.S.M.: Fabio P Machado, and S Yu Popov, The shape theorem for the frog model. Ann. Appl. Probab. 12(2), 533–546 (2002)

    Article  MathSciNet  Google Scholar 

  3. Beckman, E., Dinan, E., Durrett, R., Huo, R., Junge, M.: Asymptotic behavior of the Brownian frog model. Electron. J. Probab. 23, 1–19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckman, E., Frank, N., Jiang, Y., Junge, M., Tang, S.: The frog model on trees with drift. Electron. Commun. Probab. 24, 1–10 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brouard, V., Pokalyuk, C.: Invasion of cooperative parasites in moderately structured host populations. Stoch. Process. Appl. 1(153), 221–63 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bérard, J., Ramírez, A.F.: Large deviations of the front in a one-dimensional model of \({X+ Y\rightarrow 2X}\). Ann. Probab. 38(3), 955–1018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Comets, F., Quastel, J., Ramírez, A.: Fluctuations of the front in a one dimensional model of \({X+Y} \rightarrow 2{X}\). Trans. Am. Math. Soc. 361(11), 6165–6189 (2009)

    Article  MATH  Google Scholar 

  8. Döbler, C., Gantert, N., Höfelsauer, T., Popov, S., Weidner, F.: Recurrence and transience of frogs with drift on \({\mathbb{Z} }^d\). Electron. J. Probab. 23, 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deijfen, M., Hirscher, T., Lopes, F.: Competing frogs on \({\mathbb{Z} }^d\). Electron. J. Probab. 24, 1–17 (2019)

    Article  MATH  Google Scholar 

  10. Durrett, R.: Probability: Theory and Examples, vol. 49. Cambridge University Press, Cambridge (2019)

    Book  MATH  Google Scholar 

  11. Gantert, N., Schmidt, P.: Recurrence for the frog model with drift on \({\mathbb{Z} }\). Markov Process. Relat. Fields 15(1), 51–58 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Hermon, J.: Frogs on trees? Electron. J. Probab. 23, 1–40 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoffman, C., Johnson, T., Junge, M.: From transience to recurrence with Poisson tree frogs. Ann. Appl. Probab. 26(3), 1620–1635 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoffman, C., Johnson, T., Junge, M.: Recurrence and transience for the frog model on trees. Ann. Probab. 45(5), 2826–2854 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoffman, C., Johnson, T., Junge, M.: Infection spread for the frog model on trees. Electron. J. Probab. 24, 1–29 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson, T., Junge, M.: The critical density for the frog model is the degree of the tree. Electron. Commun. Probab. 21, 1–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson, T., Junge, M.: Stochastic orders and the frog model, No. 2, pp. 1013–1030

  18. Junge, M.: Critical percolation and \({A + B \rightarrow 2 A}\) dynamics. J. Stat. Phys. 181(2), 738–751 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kesten, H., Ramırez, A.F., Sidoravicius, V.: Asymptotic shape and propagation of fronts for growth models in dynamic random environment. Probability in Complex Physical Systems, Springer, pp. 195–223 (2012)

  20. Landsberger, M., Gandon, S., Meaden, S., Rollie, C., Chevallereau, A., Chabas, H., Buckling, A.: Edze R Westra, and Stineke van Houte, Anti-crispr phages cooperate to overcome crispr-cas immunity. Cell 174(4), 908–916 (2018)

    Article  Google Scholar 

  21. Lebensztayn, E., Utria, J.: A new upper bound for the critical probability of the frog model on homogeneous trees. J. Stat. Phys. 176(1), 169–179 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Misra, N., Singh, H., Harner, E.J.: Stochastic comparisons of Poisson and binomial random variables with their mixtures. Stat. Probab. Lett. 65(4), 279–290 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu Popov, S.: Frogs in random environment. J. Stat. Phys. 102(1), 191–201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Popov, S.Y.: Frogs and some other interacting random walks models (2003)

  25. Ramírez, A.F., Sidoravicius, V.: Asymptotic behavior of a stochastic combustion growth process. J. Eur. Math. Soc. 6(3), 293–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roy, R., Saha, K.: Coexistence in discrete time multi-type competing frog models. Electron. Commun. Probab. 26, 1–9 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Telcs, A., Wormald, N.C.: Branching and tree indexed random walks on fractals. J. Appl. Probab. 36(4), 999–1011 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Junge.

Additional information

Communicated by Pablo A Ferrari.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors received partial support from NSF grant DMS-1855516. Part of this research was completed during the 2021 Baruch College Discrete Math REU partially supported by NSF grant DMS-2051026. We are grateful to Tobias Johnson for his valuable input.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junge, M., McDonald, Z., Pulla, J. et al. A Stochastic Combustion Model with Thresholds on Trees. J Stat Phys 190, 100 (2023). https://doi.org/10.1007/s10955-023-03102-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03102-w

Navigation